期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. JIA-2021-0584 植物气孔导度和叶肉导度对非生物胁迫的响应
LI Sheng-lan, TAN Ting-ting, FAN Yuan-fang, Muhammad Ali RAZA, WANG Zhong-lin, WANG Bei-bei, ZHANG Jia-wei, TAN Xian-ming, CHEN Ping, Iram SHAFIQ, YANG Wen-yu, YANG Feng
Journal of Integrative Agriculture    2022, 21 (10): 2787-2804.   DOI: 10.1016/j.jia.2022.07.036
摘要264)      PDF    收藏
CO2是植物光合作用的重要原料,而气孔阻力与叶肉阻力是CO2扩散进入叶绿体的最大限制因素。植物的气孔导度和叶肉导度对非生物胁迫因子非常敏感,这些因子通过调控羧化位点CO2浓度来影响光合速率。气孔导度对环境的响应,叶肉导度的内部结构、生化因素限制早已有了相关综述,然而围绕环境因子对植物CO2扩散的系统调控还未进行归纳和探讨。因此,本文综述了气孔导度和叶肉导度对非生物胁迫因子(如光强、干旱、CO2浓度和温度)的快速响应和长期应答及其调控的生理机制,并对今后的研究趋势做了进一步展望。
参考文献 | 相关文章 | 多维度评价
2. Crop photosynthetic response to light quality and light intensity
Iram SHAFIQ, Sajad HUSSAIN, Muhammad Ali RAZA, Nasir IQBAL, Muhammad Ahsan ASGHAR, Ali RAZA, FAN Yuan-fang, Maryam MUMTAZ, Muhammad SHOAIB, Muhammad ANSAR, Abdul MANAF, YANG Wen-yu, YANG Feng
Journal of Integrative Agriculture    2021, 20 (1): 4-23.   DOI: 10.1016/S2095-3119(20)63227-0
摘要193)      PDF    收藏

在自然条件下,植物经常遭受各种生物和非生物因素胁迫而影响其生长和发育,特别是限制作物的生产能力。在影响植物光合作用的各种非生物因素中,光是驱动植物碳代谢和维持地球生命的重要因素,而光环境中光强和光质的变化极大地影响植物的光合作用以及其形态,生理和生化参数,且不同植物对光强和光质的响应不同,与其生长的环境条件有关。目前,大量研究报道了光照强度是如何影响作物的生长和发育,而本综述归纳总结了光环境中不同光质成分和光强对作物的叶片形态和解剖结构,气孔发育,光合作用,色素组成,活性氧,抗氧化酶和激素动态等相关参数的影响,旨在为作物光合作用对光强和光质的响应机制研究提供理论支撑。


参考文献 | 相关文章 | 多维度评价
3. Effects of lead stress on Vg expression in the beet armyworm over five successive generations
SU Hong-hua, YANG Yong, QIAN Yuan-yuan, YE Zi-bo, CHEN Yu-qing, YANG Yi-zhong
Journal of Integrative Agriculture    2019, 18 (1): 134-142.   DOI: 10.1016/S2095-3119(18)61931-8
摘要278)      PDF    收藏
Heavy metals have been found to be endocrine disruptors in invertebrates.  Lead is one of the most widespread elements of contamination, but there has been no research about the effects of lead stress on vitellogenin (Vg) gene expression in insects exposed to lead over multiple generations.  In this paper, the effects of different concentrations of lead (0, 0.3, 4.8 and 76.8 mg kg–1) on the expression of Vg in the beet armyworm over five successive generations were studied.  The results showed that lead stress had significant effects on Vg expression in a dose-dependent manner.  For females at the larval and adult stages, as lead concentration increased, Vg expression was significantly inhibited; for males at these two developmental stages, Vg expression was induced and increased as lead concentration increased.  In addition, with the increase over stressed generations, inhibited effects for females and induced effects for males at the larval and adult stages became increasingly more obvious.  However, at the pupal stage, Vg expression in the two genders was different from that at the larval and adult stages.  The results indicate that lead stress can upregulate Vg expression in males which should be a useful indicator for environmental risk assessment.
参考文献 | 相关文章 | 多维度评价
4. A joint use of emergy evaluation, carbon footprint and economic analysis for sustainability assessment of grain system in China during 2000–2015
WANG Xiao-long, WANG Wei, GUAN Yue-shan, XIAN Yuan-ran, HUANG Zhi-xin, FENG Hai-yi, CHEN Yong
Journal of Integrative Agriculture    2018, 17 (12): 2822-2835.   DOI: 10.1016/S2095-3119(18)61928-8
摘要251)      PDF    收藏
The rapid growth of grain yield in China accelerates a discussion on whether the grain system in China is sustainable.  To answer the question, a comprehensive assessment from economic and environmental points is necessary.  This study jointly used economic analysis (ECA), emergy evaluation (EME) and carbon footprint (CF) to analyze the environmental and economic sustainability of the grain production system in China based on the national statistical data during 2000–2015.  Results showed that the costs of maize, wheat, rice and soybean had increased by 252−346% from 2000 to 2015, causing the lower profit of grain system in recent years.  The situation resulted in a serious problem on economic sustainability of grain system in China.  Meanwhile, the emergy sustainability index (ESI) of maize, wheat, rice and soybean systems were increasing during 2000–2015, and the CF on unit yield of the crops had been reduced by 10−30% in the study period.  The results reflected the improved environmental sustainability of grain system in China during 2000–2015.  Nevertheless, the emergy flow of industrial inputs for the crops were increased by 4−22% in the study period, and the CF from the inputs presented a growth rate of 16−23% as well during the same period.  The results implied that the grain system in China was relying more on fossil-based inputs.  Finally, according to the key points of cost, emergy and CF, we suggest that improving labor efficiency, advanced agricultural practices and optimizing cropping pattern will be effective ways to further improve the economic and environmental sustainability of grain system in China.  
参考文献 | 相关文章 | 多维度评价
5. Shade adaptive response and yield analysis of different soybean genotypes in relay intercropping systems
WU Yu-shan, YANG Feng, GONG Wan-zhuo, Shoaib Ahmed, FAN Yuan-fang, WU Xiao-ling, YONG Tai-wen, LIU Wei-guo, SHU Kai, LIU Jiang, DU Jun-bo, YANG Wen-yu
Journal of Integrative Agriculture    2017, 16 (06): 1331-1340.   DOI: 10.1016/S2095-3119(16)61525-3
摘要917)      PDF    收藏
Soybean is one of the major oil seed crops, which is usually intercropped with other crops to increase soybean production area and yield.  However, soybean is highly sensitive to shading.  It is unclear if soybean morphology responds to shading (i.e., shade tolerance or avoidance) and which features may be suitable as screening materials in relay strip intercropping.  Therefore, in this study, various agronomic characteristics of different soybean genotypes were analyzed under relay intercropping conditions.  The soybean materials used in this study exhibited genetic diversity, and the coefficient of variations of the agronomic parameters ranged from 13.84 to 72.08% during the shade period and from 6.44 to 52.49% during the maturity period.  The ratios of shading to full irradiance in stem mass fraction (SMF) were almost greater than 1, whereas opposite results were found in the leaves.  Compared with full irradiance, the average stem length (SL), leaf area ratio (LAR) and specific leaf area (SLA) for the two years (2013 and 2014) increased by 0.78, 0.47 and 0.65 under shady conditions, respectively.  However, the stem diameter (SD), total biomass (TB), leaf area (LA), number of nodes (NN) on the main stem, and number of branches (BN) all decreased.  During the shady period, the SL and SMF exhibited a significant negative correlation with yield, and the SD exhibited a significant positive correlation with yield.  The correlation between the soybean yield and agronomic parameters during the mature period, except for SL, the first pod height (FPH), 100-seed weight (100-SW), and reproductive growth period (RGP), were significant (P<0.01), especially for seed weight per branch (SWB), pods per plant (PP), BN, and vegetative growth period (VGP).  These results provide an insight into screening the shade tolerance of soybean varieties and can be useful in targeted breeding programs of relay intercropped soybeans.  
参考文献 | 相关文章 | 多维度评价
6. Long-term rice-rice-green manure rotation changing the microbial communities in typical red paddy soil in South China
GAO Song-juan, ZHANG Ren-gang, CAO Wei-dong, FAN Yuan-yuan, GAO Ju-sheng, HUANG Jing, BAI Jin-shun, ZENG Nao-hua, CHANG Dan-na, Shimizu Katsu-yoshi, Kristian Thorup-Kristensen
Journal of Integrative Agriculture    2015, 14 (12): 2512-2520.   DOI: 10.1016/S2095-3119(15)61230-8
摘要2230)      PDF    收藏
On the basis of a long-term (30 years) field experiment that involved four rotation systems, rice-rice-winter fallow (RRF), rice-rice-ryegrass (RRG), rice-rice-rape (RRP), and rice-rice-milk vetch (RRV), this study described the effects of green manure on the microbial communities in the red paddy soils using 454 pyrosequencing for the 16S rRNA gene. The Chao1 richness and non-parametric Shannon’s index increased in all soil samples that received green manure treatments. The communities’ structures with the green manure applications were significantly dissimilar from that under the winter fallow. Using Metastats tests, many genera in the RRG, RRP and RRV soils were significantly different from those in the RRF soil, including a number of genera that functioned in the nitrogen and sulfur cycles. Analyses of the genera with these functions revealed the shifts in microbial ecosystem functions after long-term green manuring. Changes in the microbial communities increased the ammonium supply and decreased the soil acidification in green-manure-amended soils. Together, these data suggested powerful effects of green manure on both the microbial communities and the biogeochemical cycle driven by the shifts in bacterial functional groups.
参考文献 | 相关文章 | 多维度评价
7. Genetic Analysis and Preliminary Mapping of a Highly Male-Sterile Gene in Foxtail Millet (Setaria italica L. Beauv.) Using SSR Markers
WANG Jun, WANG Zhi-lan, YANG Hui-qing, YUAN Feng, GUO Er-hu, TIAN Gang, AN Yuan-
Journal of Integrative Agriculture    2013, 12 (12): 2143-2148.   DOI: 10.1016/S2095-3119(13)60392-5
摘要1913)      PDF    收藏
Breeding of male-sterile lines has become the mainstream for the heterosis utilization in foxtail millet, but the genetic basis of most male-sterile lines used for the hybrid is still an area to be elucidated. In this study, a highly male-sterile line Gao146A was investigated. Genetic analysis indicated that the highly male-sterile phenotype was controlled by a single recessive gene a single recessive gene. Using F2 population derived from cross Gao146A/K103, one gene controlling the highly male- sterility, tentatively named as ms1, which linked to SSR marker b234 with genetic distance of 16.7 cM, was mapped on the chromosome VI. These results not only laid the foundation for fine mapping of this highly male-sterile gene, but also helped to accelerate the improvement of highly male-sterile lines by using molecular marker assisted breeding method.
参考文献 | 相关文章 | 多维度评价
8. Genetic Analysis and Mapping of an Enclosed Panicle Mutant Locus esp1 in Rice (Oryza sativa L.)
DUAN Yuan-lin, GUAN Hua-zhong, ZHUO Ming, CHEN Zhi-wei, LI Wen-tao, PAN Run-sen, MAO Da-mei, ZHOU Yuan-chang, WU Wei-ren
Journal of Integrative Agriculture    2012, 12 (12): 1933-1939.   DOI: 10.1016/S1671-2927(00)8729
摘要1879)      PDF    收藏
A mutant was isolated from the M2 of 60Co-g ray mutagenized male-fertility restorer line Zao-R974 in rice. The mutant showed pleiotropic phenotypes including dwarfism, delayed heading time, short and partially enclosed panicles, short uppermost internode, decreased grain and secondary branch numbers per panicle, and partially degenerated spikelets. The mutant was named as esp1 (enclosed shorter panicle 1). Genetic analysis indicated that the mutant phenotype was controlled by a recessive locus. Spraying exogenous GA3 did not rescue the panicle enclosure. Using an F2 and a BC1 population of the cross between esp1 and a japonica cultivar Nipponbare, we mapped the ESP1 locus to a region of ~260 kb on chromosome 11. This result provides a basis for further map-based cloning of the ESP1 locus.
参考文献 | 相关文章 | 多维度评价