Journal of Integrative Agriculture ›› 2023, Vol. 22 ›› Issue (9): 2796-2809.DOI: 10.1016/j.jia.2023.02.029

• • 上一篇    下一篇

不规则田块的无人机喷洒农药二值化网格路径规划方法研究

  

  • 收稿日期:2022-09-30 接受日期:2022-12-10 出版日期:2023-09-20 发布日期:2023-09-14

A binary gridding path-planning method for plant-protecting UAVs on irregular fields

XU Wang-ying1, YU Xiao-bing1#, XUE Xin-yu2   

  1. 1 School of Management Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 214000, P.R.China
    2 Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 214000, P.R.China
  • Received:2022-09-30 Accepted:2022-12-10 Online:2023-09-20 Published:2023-09-14
  • About author:XU Wang-ying, E-mail: 20201224033@nuist.edu.cn; #Correspondence YU Xiao-bing, E-mail: yuxb111@163.com
  • Supported by:

    This research was funded by the National Natural Science Foundation of China (72274099 and 71974100), the Humanities and Social Sciences Fund of the Ministry of Education, China (22YJC630144), the Major Project of Philosophy and Social Science Research in Colleges and Universities in Jiangsu Province, China (2019SJZDA039) and the Postgraduate Research & Practice Innovation Program of Jiangsu Province, China (KYCX22_1244).

摘要:

使用植保无人机(UAV)进行农药喷施是现代农业重要的作业方式。在无人机作业过程中,如何规划无人机的路径,使其最大化的节约资源与能耗,是当前领域研究的一大重点。目前,栅格法是使用频率较高的一种无人机植保路径规划方法。然而,传统栅格法存在方法死板、无法解决凹多边形田块路径规划等问题。本论文在栅格化的基础上,提出了一种不规则田块二值化网格模型。通过该模型可以输出一种二值化网格矩阵,大大提高了解决问题的灵活性。为了求解该模型,提出了一种改进的基于拐点和平面测量技术的非支配排序遗传算法(KPPM-NSGA-ii)。分别建立凸多边形、凹多边形和复杂地形不同情形下的二值化网格模型。实验表明,无论是农药消耗量还是能源消耗量,所提出的KPPM-NSGA-ii算法都比NSGA-ii算法与无规划喷洒方法所得结果更优,该算法节省了能源和农药用量,提高了实际应用的效率。

Abstract: The use of plant-protecting unmanned aerial vehicles (UAVs) for pesticide spraying is an essential operation in modern agriculture.  The balance between reducing pesticide consumption and energy consumption is a significant focus of current research in the path-planning of plant-protecting UAVs.  In this study, we proposed a binarization multi-objective model for the irregular field area, specifically an improved non-dominated sorting genetic algorithm–II based on the knee point and plane measurement (KPPM-NSGA-ii).  The binarization multi-objective model is applied to convex polygons, concave polygons and fields with complex terrain.  The experiments demonstrated that the proposed KPPM-NSGA-ii can obtain better results than the unplanned path method whether the optimization of pesticide consumption or energy consumption is preferred.  Hence, the proposed algorithm can save energy and pesticide usage and improve the efficiency in practical applications.

Key words: plant-protecting UAV ,  path-planning ,  multi-objective optimization ,  gridization ,  Pareto optimal