Journal of Integrative Agriculture ›› 2022, Vol. 21 ›› Issue (9): 2492-2507.DOI: 10.1016/j.jia.2022.07.007

所属专题: 玉米遗传育种合辑Maize Genetics · Breeding · Germplasm Resources

• 论文 • 上一篇    下一篇

JIA-2020-2642 基于永久F2群体的玉米果穗相关性状遗传解析

  

  • 收稿日期:2020-12-27 接受日期:2021-04-02 出版日期:2022-09-01 发布日期:2021-04-02

Genetic dissection of ear-related traits using immortalized F2 population in maize

GAO Ri-xin1,2, HU Ming-jian1,2, ZHAO Hai-ming1,2, LAI Jin-sheng1,2, SONG Wei-bin1, 2   

  1. 1 State Key Laboratory of Plant Physiology and Biochemistry & National Maize Improvement Center, Department of Plant Genetics and Breeding, China Agricultural University, Beijing 100193, P.R.China

    2 Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R.China

  • Received:2020-12-27 Accepted:2021-04-02 Online:2022-09-01 Published:2021-04-02
  • About author:Correspondence SONG Wei-bin, Tel: +86-10-62734641, E-mail: songwb@cau.edu.cn
  • Supported by:
    This work was supported by the National Key R&D Program of China (2016YFD0100802 and 2016YFD0101803) and the National Natural Science Foundation of China (31421005 and 91935303). 

摘要:

本研究构建了一个由265个组合所构成的永久F2(IF2)群体,将IF2群体以及相应的RIL亲本分别于2017年和2018年种植于北京上庄和河南开封两个地点,我们对穗行数(RN)、行粒数(KNPR)、穗长(EL)、穗粗(ED)、十粒厚(TKT)、单穗重(EW)、穗粗(CD)、粒长(KL)、粒宽(KW)、穗粒重(GW)、百粒重(HKW)、籽粒产量(GY)等12个果穗相关性状进行调查,然后用R/qtl软件对该12个性状作单环境QTL分析,结果表明,在四个种植环境下共鉴定到165个QTL,单个QTL可以解释0.1%-12.66%的表型变异。其中,19个QTL于多环境下被鉴定到,我们称之为“稳定QTL”。此外,经过对显性度的分析,发现约44.85%的QTL表现出超显性效应,约12.72%的QTL表现出显性效应。最后,我们鉴定了35个基因组多效性区间,这些区间分别包含两个及以上QTL。同时,通过对RN、EL、ED和EW四个性状的杂种优势数据集进行分析,我们鉴定出17个的杂种优势相关QTL位点。本研究得到的结果为理解玉米果穗相关性状的遗传机制提供了新的见解,并拓展了我们对玉米杂种优势遗传基础的理解


Abstract:

Ear-related traits are often selection targets for maize improvement.  This study used an immortalized F2 (IF2) population to elucidate the genetic basis of ear-related traits.  Twelve ear-related traits (namely, row number (RN), kernel number per row (KNPR), ear length (EL), ear diameter (ED), ten-kernel thickness (TKT), ear weight (EW), cob diameter (CD), kernel length (KL), kernel width (KW), grain weight per ear (GW), 100-kernel weight (HKW), and grain yield per plot (GY)), were collected from the IF2 population.  The ear-related traits were comprised of 265 crosses derived from 516 individuals of the recombinant inbred lines (RILs) under two separated environments in 2017 and 2018, respectively.  Quantitative trait loci (QTLs) analyses identified 165 ear traits related QTLs, which explained phenotypic variation ranging from 0.1 to 12.66%.  Among the 165 QTLs, 19 underlying nine ear-related traits (CD, ED, GY, RN, TKT, HKW, KL, GW, and KNPR) were identified across multiple environments and recognized as reliable QTLs.  Furthermore, 44.85% of the total QTLs showed an overdominance effect, and 12.72% showed a dominance effect. Additionally, we found 35 genomic regions exhibiting pleiotropic effects across the whole maize genome, and 17 heterotic loci (HLs) for RN, EL, ED and EW were identified.  The results provide insights into genetic components of ear-related traits and enhance the understanding of the genetic basis of heterosis in maize. 

Key words: maize (Zea mays L.) ,  QTL mapping ,  genotyping by sequencing ,  immortalized F2 population ,  ear-related traits