[1]Armstrong C L, Green C E. 1985. Establishment and maintenance of friable embryogenic maize callus and the involvement of L-proline. Planta, 164, 207-214[2]Brettschneider R, Becker D, Lorz H 1997. Efficient transformation of scutellar tissue of immature maize embryos. Theoretical and Applied Genetics, 94, 737- 748. [3]Cheng M, Jarret R L, Li Z, Xing A, Demski J W. 1996. Production of fertile transgenic peanut (Arachis kypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Reports, 15, 653-657[4]Dong S J, Qu R D 2005. High efficiency transformation of tall fescue with Agrobacterium tumefaciens. Plant Science, 168, 1453-1458[5]Green C E, Phillips R L 1975. Plant regeneration from tissue cultures of maize. Crop Science, 15, 417-421[6]Hiei Y, Ohta S, Komari T, Kumashiro T 1994. Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. The Plant Joural, 6, 271-282[7]Howe A, Sato S, Dweikat I, Fromm M, Clemente T 2006. Rapid and reproducible Agrobacterium-mediated transformation of sorghum. Plant Cell Reports, 25, 784- 791. [8]Huang X, Wei Z. 2005. Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell, Tissue and Organ Culture, 83, 187-200[9]Huang Y H, Zhou M P, Ye X G, Tang K X, Cheng H M, Lu W Z. 2002. Study on the development of transgenic wheat mediated by Agrobacterium tumefaciens. Acta Agronomica Sinica, 28, 510-515 (in Chinese)[10]Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology, 14, 745-750[11]Jefferson R A, Kavanagh T A, Bevan M W. 1987. GUS- fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal, 6, 3901- 3907. [12]Murray M G, Thompson W F. 1980. Rapid isolation of highmolecular-weight plant DNA. Nucleic Acids Research, 8, 4321-4325[13]Pareddy D R, Petolino J F. 1990. Somatic embryogenesis and plant regeneration from immature inflorescences of several elite inbreds of maize. Plant Science, 67, 211- 219. [14]Ray D S, Ghosh P D. 1990. Somatic embryogenesis and plant regeneration from cultured leaf explants of Zea mays. Annals of Botany, 66, 497-500[15]Rhodes C A, Green C E, Phillips R L. 1986. Factors affecting tissue culture initiation from maize tassels. Plant Science, 46, 225-232[16]Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. [17]Santos M A, Torne J M, Blanco J L. 1984. Methods of obtaining maize totipotent tissues I: seedling segments culture. Plant Science Letter, 33, 309-315[18]Schlappi M, Hohn B. 1992. Competence of immature maize embryos for Agrobacterium mediated gene transfer. The Plant Cell, 4, 7-16[19]Schroeder H E, Schotz A H, Wardley-Richardson T, Spencer D, Higgins T J V. 1993. Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiology, 101, 751-757[20]Songstad D D, Peterson W L, Armstrong C L. 1992. Establishment of friable embryogenic (type II) callus from immature tassels of Zea mays (Poaceae). American Journal of Botany, 79, 761-764[21]Suprasanna P, Rao K V, Reddy G M. 1986. Plantlet regeneration from glume calli of maize (Zea mays L.). Theoretical and Applied Genetics, 72, 120-122[22]Ting Y C, Yu M, Wan Z Z. 1981. Improved anther culture of maize (Zea mays L.). Plant Science Letter, 23, 139- 145. [23]Umbeck P, Swain W, Yang N S. 1989. Inheritance and expression of genes for kanamycin and chloramphenicol resistance in transgenic cotton plants. Crop Science, 29, 196-201[24]Vasil V, Vasil I K, Lu C. 1984. Somatic embryogenesis in long term callus cultures of Zea mays L. (Gramineae). American Journal of Botany, 71, 158-161[25]Wang J X, Sun Y, Li Y. 2007. Maize (Zea mays) genetic transformation by co-cultivating germinating seeds with Agrobacterium tumefaciens. Biotechnology and Applied Biochemistry, 46, 51-55(in Chinese)[26]Wang X H, Bai J R, Sun Y, Shi X Y, Ren Z Q. 2010. Study on Agrobacterium tumefaciens-mediated glyphosate- resistant gene (EPSPS) transformation and correlation factor in maize. Journal of Shanxi Agricultural Scienses, 38, 11-14 (in Chinese) [27]Yang A G. 2006. Study one the optimization of the maize callus genetic transformation system mediated by Agrobacterium and the male sterile line in genetic engineering. PhD thesis, Sichuan Agricultural University, China. (in Chinese) [28]Yuan Y, Li Q Y, Hao W Y. 2006. Studies on influencing factors of Agrobacterium tumefaciens mediated maize transformation. Molecular Plant Breeding, 14, 228-232[29]Z h a n g S, Williams-Carrier, Lemaux P G. 2002. Transformation of recalcitrant maize elite inbreds using in vitro shoot meristematic cultures induced from germinated seedlings. Plant Cell Reports, 21, 263-270[30]Zhang S Z, Rong T Z. 2008. Advance of Agrobaterium-mediated genetic transformation system of maize (Zea mays L.). Hereditas, 30, 1249-1256[31]Zhao Z Y, Gu W, Cai T, Tagliani L, Hondred D, Bond D, Schroeder S, Rudert M, Pierce D. 2002. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Molecular Breed, 8, 323-333[32]Zhong H, Srinivasan C, Sticklen M B. 1992. In-vitro morphogenesis of corn (Zea mays L.). Planta, 187, 483- 489. [33]Zhu Y. 2002. Identification of glyphsate-tolerant Psedomonas fluorescens strain G2 from extremly polluted environment and cloning of its EPSP synthase gene. MSc thesis, Chinese Academy of Agricultural Sciences, China. (in Chinese) |