[1]Ansari-Mahyari S, Sørensen A C, Lund M S, Thomsen H, Berg P. 2008. Across-family marker-assisted selection using selective genotyping strategies in dairy cattle breeding schemes. Journal of Dairy Science, 91, 1628-1639. [2]Calus M P L, Meuwissen T H E, de Roos A P W, Veerkamp R F. 2008. Accuracy of genomic selection using different methods to define haplotypes. Genetics, 178, 553-561. [3]Dekkers J C M. 2004. Commercial application of marker and gene-assisted selection in livestock: strategies and lessons. Journal of Animal Science, 82, E313-E328. Gianola D, Fernando R L, Stella A. 2006. Genomic assisted prediction of genetic value with semi-parametric procedures. Genetics, 173, 1761-1776. [4]Goddard M E, Hayes B J. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nature Review Genetics, 10, 381-391. [5]Graser H U, Nitter G, Barwick S A. 1994. Evaluation of advanced industry breeding schemes for Australian beef cattle. II. Selection on combinations of growth, reproduction and carcass criteria. Australian Journal of Agricultural Research, 45, 1657-1669. [6]Habier D, Fernando R L, Dekkers J C M. 2007. The impact of genetic relationship information on genome-assisted breeding values. Genetics, 177, 2389-2397. [7]Habier D, Fernando R L, Dekkers J C M. 2009. Genomic selection using low-density marker panels. Genetics, 182, 343-353. [8]Hazel L N. 1943. The genetic basis for constructing selection indexes. Genetics, 28, 476-490. [9]Hayes B J, Bowman P J, Chamberlain A J, Goddard M E. 2009. Invited review: genomic selection in dairy cattle: progress and challenges. Journal of Dairy Science, 92, 433-443. [10]Hill W G. 1974. Prediction and evaluation of response to selection with overlapping generations. Animal Production, 18, 117- 139. Kasonta J S, Nitter G. 1990. Efficiency of nucleus breeding schemes in dual-purpose cattle of Tanzania. Animal Production, 50, 245-251. [11]König S, Simianer H, Willam A. 2009. Economic evaluation of genomic breeding programs. Journal of Dairy Science, 92, 382-391. [12]Kominakis A, Nitter G, Fewson D, Rogdakis E. 1997. Evaluation of the efficiency of alternative selection schemes and breeding objectives in dairy sheep of greece. Animal Science, 64, 453- 461. [13]Kosgey I S, Kahi A K, van Arendonk J A M. 2005. Evaluation of closed adult nucleus multiple ovulation and embryo transfer and conventional progeny testing breeding schemes for milk production in tropical crossbred cattle. Journal of Dairy Science, 88, 1582-1594. [14]Lande R, Thompson R. 1990. The efficiency of marker assisted selection in dairy cattle breeding schemes. Genetics, 124, 743-753. [15]Luo W Z, Wang Y C, Zhang Y. 2008. Simulation study on the efficiencies of MOET nucleus breeding schemes applying marker assisted selection in dairy cattle. Science in China (Series C-Life Sciences), 38, 1056-1065. [16]Meuwissen T H E, Hayes B, Goddard M E. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157, 1819-1829. [17]Muir W M. 2007. genomic and traditional BLUP-estimated breeding value accuracy and selection response under alternative trait and genomic parameters. Journal of Animal Breeding and Genetics, 124, 342-355. [18]Nicholas F W, Smith C. 1983. Increased rates of genetic change in dairy cattle by embryo transfer and splitting. Animal Production, 36, 341-353. [19]Nitter G, Bartenschlager H, Karras K, Niebel E, Graser H U. 2007. ZPLAN: a PC-Program to Optimize Livestock Selection Schemes. University of Hohenheim, Germany and University of New England, Armidale, Australia. Norman H D, Powell R L, Wright J R, Sattler C G. 2004. Overview of progeny-test programs of artificial-insemination organizations in the United States. Journal of Dairy Science, 84, 1899-1912. [20]Powell R L, Norman H D, Sanders A H. 2003. Progeny testing and selection intensity for Holstein bulls in different countries. Journal of Dairy Science, 86, 3386-3393. [21]van Raden P M. 2008. Efficient methods to compute genomic predictions. Journal of Dairy Science, 91, 4414-4423. [22]vanRaden P M, van Tassell C P, Wiggans G R, Sonstegard T S, Schnabel R D, Taylor J F, Schenkel F S. 2009. Invited review: reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 92, 16-24. [23]de Roos A P W, Hayes B J, Goddard M E. 2009. Reliability of genomic predictions across multiple populations. Genetics, 183, 1545-1553. [24]Schaeffer L R. 2006. Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123, 218-223. [25]Stella A, Lohuis M, Pagnacco G, Jansen G B. 2002. Strategies for continual application of marker-assisted selection in an open nucleus population. Journal of Dairy Science, 85, 2358-2367. [26]Wünsch U, Nitter G, Schüler L. 1999. Genetic and economic evaluation of genetic improvement schemes in pigs. I. Methodology with an application to a three-way crossbreeding scheme. Archiv Tierzucht, 42, 571-582. [27]Xu S Z. 2003. Estimating polygenic effects using markers of the entire genome. Genetics, 163, 789-801. [28]Zhang Y. 2000. Animal Breeding Plan. China Agricultural University Press, Beijing. pp. 149-178. (in Chinese) |