[1]Bari R, Pant B D, Stitt M, Scheible W R. 2006. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 141, 988-999. [2]Bewley J D. 1997. Seed germination and dormancy. The Plant Cell, 9, 1055-1066. [3]Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L. 2006. Regulation of phosphate homeostasis by microRNA in Arabidopsis. The Plant Cell, 18, 412-421. [4]Christmann A, Moes D, Himmelbach A, Yang Y, Tang Y, Grill E. 2006. Integration of abscisic acid signalling into plant responses. Plant Biology, 8, 314-325. [5]Cutler S, McCourt P. 2005. Dude, where’s my phenotype? Dealing with redundancy in signaling networks. Plant Physiology, 138, 558-559. [6]Devaiah B N, Karthikeyan A S, Raghothama K G. 2007a. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in Arabidopsis. Plant Physiology, 143, 1789-1801. [7]Devaiah B N, Nagarajan V K, Raghothama K G. 2007b. Phosphate homeostasis and root development in Arabidopsis are synchronized by the zinc finger transcription factor ZAT6. Plant Physiology, 145, 147-159. [8]Englbrecht C C, Schoof H, Böhm S. 2004. Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics, 5, 39. Finkelstein R, Reeves W, Ariizumi T, Steber C. 2008. Molecular aspects of seed dormancy. Annual Review of Plant Biology, 59, 387-415. [9]Finkelstein R R, Gampala S S, Rock C D. 2002. Abscisic acid signaling in seeds and seedlings. The Plant Cell, 14, S15-S45. [10]González E, Solano R, Rubio V, Leyva A, Paz-Ares J. 2005. Phosphate transporter traffic facilitator 1 is a plantspecific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. The Plant Cell, 17, 3500-3512. [11]González-Guzmán M, Apostolova N, Bellés J M, Barrero J M, Piqueras P, Ponce M R, Micol J L, Serrano R, Rodríguez P L. 2002. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. The Plant Cell, 14, 1833-1846. [12]Guo L, Zhao Y, Zhang S, Zhang H, Xiao K. 2009. Improvement of organic phosphate acquisition in transgenic tobacco plants by overexpression of a soybean phytase gene Sphy1. Frontiers of Agriculture in China, 3, 259-265. [13]Huang J, Yang X, Wang M M, Tang H J, Ding L Y, Shen Y, Zhang H S. 2007. A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochimica et Biophysica Acta, 1769, 220-227. [14]Hugouvieux V, Kwak J M, Schroeder J I. 2001. An mRNA cap binding protein, ABH1, modulates early abscisic acid signal transduction in Arabidopsis. Cell, 106, 477-487. [15]Iida A, Kazuoka T, Torikai S, Kikuchi H, Oeda K. 2000. A zinc finger protein RHL41 mediates the light acclimation response in Arabidopsis. The Plant Journal, 24, 191-203. [16]Iwasaki T, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K. 1997. The dehydration-inducible rd17 (cor47) gene and its promoter region in Arabidopsis thaliana. Plant Physiology, 115, 1287-1298. [17]Long S X, Lu W J, Gu J T, Guo C J, Xiao K. 2009. Construction of a cDNA subtractive library enriched the response genes of deficient-Pi stress and functional identification of some ESTs in the library. Acta Agriculturae Boreali-Sinica, 24, 12-16. (in Chinese) [18]Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N. 2005. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the USA, 102, 11934-11939. [19]Mittler R, Kim Y, Song L, Coutu J, Coutu A, Ciftci-Yilmaz S, Lee H, Stevenson B, Zhu J J. 2006. Gain-and loss-offunction mutations in Zat10 enhance the tolerance of plants to abiotic stress. FEBS Letter, 580, 6537-6542. [20]Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan A S, Raghothama K G, Baek D, Koo Y D, Jin J B, Bressan R A. 2005. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the USA, 102, 7760-7765. [21]Nakashima K, Yamaguchi-Shinozaki Y. 2006. Regulations involved in osmotic stress-responsive and stressresponsive gene expression in plants. Physiologia Plantarum, 126, 62-71. [22]Nambara E, Marion-Poll A. 2005. Abscisic acid biosynthesis and catabolism. Annual Review of Plant Biology, 56, 165-185. [23]Nemhauser J L, Hong F, Chory J. 2006. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell, 126, 467-475. [24]Pei Z M, Kuchitsu K. 2005. Early ABA signaling events in guard cells. Journal of Plant Growth Regulation, 24, 296-307. [25]Rubio V, Linhares F, Solano R, Martín A C, Iglesias J, Leyva A, Paz-Ares J. 2001. A conserved MYB transcription factor involved in phosphate starvation signalling both in vascular plants and in unicellular algae. Genes & Development, 15, 2122-2133. [26]Sakamoto H, Araki T, Meshi T, Iwabuchi M. 2000. Expression of a subset of the Arabidopsis Cys(2)/His (2)-type zinc-finger protein gene family under water stress. Gene, 248, 23-32. [27]Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K,Yamaguchi-Shinozaki K. 2004. Arabidopsis Cys2/His2-type zinc finger proteins function as transcription repressors under drought, cold and high-salinity stress conditions. Plant Physiology, 136, 2734-2746. [28]Shinozaki K, Yamaguchi-Shinozaki K. 2000. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology, 3, 217-223. [29]Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany, 58, 221-227. [30]Skriver K, Mundy J. 1990. Gene expression in response to abscisic acid and osmotic stress. The Plant Cell, 2, 503-512. [31]Vogel J T, Zarka D G, van Buskirk H A, Fowler S G, Thomashow M F. 2005. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. The Plant Journal, 41, 195-211. [32]Wang H, Datla R, Georges F, Loewen M, Cuter A J. 1995. Promoters from Kin1 and cor 6.6, two homologous Arabidopsis thaliana genes: Transcriptional regulation and gene expression induced by low temperature, ABA osmoticum and dehydration. Plant Molecular Biology, 28, 605-617. [33]Wasaki J, Yonetani R, Kuroda S, Shinano T, Yazaki J, Fujii F, Shimbo K, Yamamoto K, Sakata K, Sasaki T. 2003. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell and Environment, 26, 1515-1523. [34]Wu P, Ma L, Hou X, Wang M, Wu Y, Liu F, Deng X W. 2003. Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 132, 1260-1271. [35]Xu D Q, Huang J, Guo S Q, Yang X, Bao Y M, Tang H J, Zhang H S. 2008. Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letter, 582, 1037-1043. [36]Yamaguchi-Shinozaki K, Shinozaki K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual Review of Plant Biology, 57, 781-803. [37]Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P. 2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology, 138, 2087-2096. [38]Zhang H N, Guo C J, Li C D, Xiao K. 2008. Cloning, characterization and expression analysis of two superoxide dismutase (SOD) genes in wheat (Triticum aestivum L.). Frontiers of Agriculture in China, 2, 141-149. [39]Zhu J K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology, 53, 247-273. |