中国农业科学 ›› 2017, Vol. 50 ›› Issue (11): 1973-1981.doi: 10.3864/j.issn.0578-1752.2017.11.003

所属专题: 玉米栽培研究专刊

• 群体生理与合理密植 • 上一篇    下一篇

玉米群体生长与光截获的动态模拟及应用

曹亦兵,黄收兵,王媛媛,夏雨晴,孟庆锋,陶洪斌,王璞   

  1. 中国农业大学农学院,北京 100193
  • 收稿日期:2016-08-25 出版日期:2017-06-01 发布日期:2017-06-01
  • 联系方式: 曹亦兵,E-mail:784298412@qq.com
  • 基金资助:
    国家玉米产业技术体系(201203031)、“粮食丰产增效科技创新”重点专项(SQ2017YFNC050062)

Dynamic Simulation of Relationship Between Light Interception and Growth of Maize Population and Its Application

CAO YiBing, HUANG ShouBing, WANG YuanYuan, XIA YuQing, MENG QingFeng, TAO HongBin, WANG Pu   

  1. College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193
  • Received:2016-08-25 Published:2017-06-01 Online:2017-06-01

摘要: 【目的】群体光截获对玉米生长发育及产量形成均有重要的影响,合理的群体结构直接决定着玉米产量的增加与稳定。群体结构的测量较为繁琐,费时费力,且不能与当地太阳辐射情况充分结合,从而无法对群体结构和功能做出整体的评价。因此,有必要构建合理、简便的玉米群体光截获动态模型,结合群体不同生育期的形态指标与光辐射情况,对群体结构做出快速而精准的评价,为不同区域玉米品种选择、播种密度确定、以及后期管理等提供参考意见。【方法】将玉米群体结构模型与光分布模型相结合,建立简易可靠的群体光截获动态模型。该模型可模拟玉米整个生育期群体光截获的动态变化,并对不同生育期群体结构做出相应的评价。同时,在中国农业大学吴桥实验站开展了两个田间试验,对模型的准确性和应用功能进行了验证。试验均为三因素,分别为品种、密度和氮肥处理,其中试验一:设置2个品种(郑单958,丹玉405),3个密度(4.5×104,6.0×104,7.5×104株/hm2)和3个氮肥处理(不施氮;施氮180 kg·hm-2,于播前、大喇叭口期和吐丝期以1﹕4﹕1的比例施入;施氮270 kg·hm-2,于播前、大喇叭口期和吐丝期以4﹕4﹕1的比例施入);试验二:设置1个品种(郑单958)、1个密度(8.25×104株/hm2)和6个播期(4月20日,5月5日与20日,6月4日与18日,7月3日)。在两个试验中,对玉米不同生育期的群体形态指标、干物重、及产量均进行了测定。【结果】吐丝期和灌浆中期的群体光截获率模拟值与测量值的相关系数分别为0.91和0.85,均达到显著相关。运用该模型对两个田间试验数据的模拟结果显示,光截获率(量)随灌浆期的推进呈先增后减的趋势,吐丝后50 d光截获衰减加速。在试验地区,密度超过6×104株/hm2时,光截获随密度变化不大;播期为6月中上旬时形成的玉米群体具有较为理想的光截获能力,结构功能潜力较大。产量与灌浆期有效光辐射呈正相关,但相关性随生育期推进逐渐减弱,表明灌浆后期产量的增加对群体光截获的需求减弱。在玉米生长发育后期物质转移对产量的贡献可能发挥着更加重要的作用。产量与群体光截获相关性的动态变化与品种有关,紧凑株型优于平展型。【结论】选择株型紧凑且生育后期群体结构维持较好的玉米品种,通过增加密度可进一步增加夏玉米产量。调整播期增强灌浆初期光合效率也是有效的增产方法之一

关键词: 玉米;群体结构;模型;光截获, 密度;播期;产量

Abstract: 【Objective】 The population light interception (PLI) has a great impact on growth, development, and grain production of maize (Zea mays L.) in interaction with canopy structure of maize population. It costs amounts of time and labor to measure the morphology index in the evaluation of maize canopy structure. And it is impossible to integrate solar radiation into the evaluation of canopy structure. Therefore, it is quite necessary to develop a simple but feasible model that combine canopy structure and solar radiation to improve the evaluation of maize canopy structure, and thus to guide farmers in crop management.【Method】Based on the canopy structure model and light distribution model, a simple and reliable light interception model of maize canopy was developed. In order to evaluate the prediction accuracy of this model, two field trials were conducted at Wuqiao Experimental Station of China Agricultural University in 2009-2011. Trial 1 was set up as a split-plot design with varieties (ZD 958 and DY 405) and plant densities (45 000, 60 000, and 75 000 plant/hm2) as main factors, and nitrogen management (No nitrogen; 180 kg·hm-2 N applied at sowing﹕13-leaf stage﹕silking stage=1﹕4﹕1; 270 kg·hm-2 N applied at sowing﹕13-leaf stage﹕silking stage =4﹕4﹕1) as second factor. Trial 2 was in a randomized complete block design, including one variety (ZD 958), one plant density (82 000 plant/hm2), and six sowing dates (April 20, May 5 and 20, June 4 and 18, and July 3, 2009). 【Result】The simulated PLI rates were significantly correlated with measured PLI rates at silking stage and mid kernel-filling stage, with r values of 0.91 and 0.85, respectively. During the entire kernel-filling stage, the PLI values first increased and then decreased, and the reduction became more obvious on 50 days after silking. Moreover, the PLI values remained at the highest level when plant density was greater than 60 000 plant/hm2. Additionally, population structure under sowing date of June 4 achieved the highest PLI, demonstrating its great potential of structure-function for the yield improvement. PLI and yield were positively correlated, while their correlation coefficient declined over time during grain-filling period, indicating that the dry matter allocation might play more important roles on yield during the late grain-filling period. The decline of correlation coefficient also depended on variety; variety with erecter leaves could remain a higher coefficient value over time. 【Conclusion】The potential to further improve maize yield through increasing plant density  (>75 000 plant/hm2) is limited at experimental site. Some strategies should be concerned, such as (1) applying varieties with erect leaves and long-lasting canopy structure persistence during late grain-filling period, and (2) adjusting sowing date according to climate situation to increase population photosynthesis at early grain-filling period.

Key words: maize (Zea mays L.), canopy structure, model, light interception, plant density, sowing date, yield