期刊
出版年
关键词
结果中检索
(((YANG Shu-Li[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
Screening and characterization of a novel ruminal cellulase gene (
Umcel
-1) from a metagenomic library of gayal (
Bos frontalis
)
LI Bi-feng, ZHU Ya-xin, GU Zhao-bing, CHEN Yuan, LENG Jing, GOU Xiao, FENG Li, LI Qing, XI Dong-mei, MAO Hua-ming, YANG Shu-Li
Journal of Integrative Agriculture 2016, 15 (
4
): 855-861. DOI:
10.1016/S2095-3119(15)61144-3
摘要
(
1749
)
PDF
可视化
收藏
Gayal is a rare semi-wild bovine species found in the Indo-China. They can graze grasses, including bamboo leaves, as well as reeds and other plant species, and grow to higher mature live weights than Yunnan Yellow cattle maintained in similar harsh environments. The aim of this study was to identify specific cellulase in the gayal rumen. A metagenomic fosmid library was constructed using genomic DNA isolated from the ruminal contents of four adult gayals. This library contained 38 400 clones with an average insert size of 35.5 kb. The
Umcel
-1 gene was isolated from this library. Investigation of the cellulase activity of 24 random clones led to the identification of the
Umcel
-1 gene, which exhibited the most potent cellulase activity. Sequencing the
Umcel
-1 gene revealed that it contained an open reading frame of 942 base pairs that encoded a product of 313 amino acids. The putative gene Umcel-1 product belonged to the glycosyl hydrolase family 5 and showed the highest homology to the cellulase (GenBank accession no. YP_004310852.1) from
Clostridium lentocellum
DSM 5427, with 44% identity and 62% similarity. The
Umcel
-1 gene was heterologously expressed in
Escherichia coli
BL21, and recombinant Umcel-1 was purified. The activity of purified recombinant
Umcel
-1 was assessed, and the results revealed that it hydrolyzed carboxymethyl cellulose with optimal activity at pH 5.5 and 45°C. To our knowledge, this study provides the first evidence for a cellulase produced by bacteria in gayal rumen.
参考文献
|
相关文章
|
多维度评价
Select
2.
Identification of the miniature pig inbred line by skin allograft
MU Yu-lian, LIU Lan, FENG Shu-tang, WU Tian-wen, LI Kui, LI Jun-you, HE Wei, GAO Qian, ZHOU Wen-fang, WEI Jing-liang, TANG Fang, YANG Shu-lin, WU Zhi-gu, XIA Ying, SUN Tong-zhu
Journal of Integrative Agriculture 2015, 14 (
7
): 1376-1382. DOI:
10.1016/S2095-3119(14)60976-X
摘要
(
2016
)
PDF
可视化
收藏
Skin grafting has been used as one of the most reliable tests to determine the genetic stability of laboratory animal such as mice and rats inbred line, but no identification of swine inbred lines by skin grafting has been reported. At present, Wuzhishan miniature pig (WZSP) inbred line has acquired the F24 individuals in China. In order to verify whether WZSP inbred line had been cultivated successfully, allogeneic skin grafts and related research were performed on F20 individuals of WZSP inbreeding population, compared with a control group of autologous transplantation. We observed the transplant recipients’ wounds, detected peripheral blood-related indicators interleukin-2, 4 and 10, CD4+ and CD8+ lymphocytes, and conducted hematoxylin-eosin (HE) and Masson’s staining of skin to judge whether the immune rejection reactions occurred within 28 days after transplantation. Chr. 7 genomic heterozygosity of 48 WZSP individuals from F20 to F22 was analyzed by high-density single nucleotide polymorphism (SNP) chips (60 000 SNPs). The result showed that there were no significant differences in graft skin, the plasma interleukin-2, 4, 10, CD4+ and CD8+, HE and Masson’s staining results between the allograft and autograft groups, and no immune rejection occurred on the allograft group. We found that 11 genes in Chr. 7 of major histocompatibility complex (MHC) I and MHC II were homozygous which confirmed that immune antibody of the allograft and autograft groups were highly identical and also provided a theoretical basis to no immune rejection occurred on the allograft in the inbred WZSP. The result proved that the WZSP inbred line had been cultivated successfully for the first time in the world. The test methods also provide a scientific basis for the identification of swine and mammal inbred lines.
参考文献
|
相关文章
|
多维度评价
Select
3.
Dynamic Expression of MicroRNA-127 During Porcine Prenatal and Postnatal Skeletal Muscle Development
YANG Ya-lan, LI Yan, LIANG Ru-yi, ZHOU Rong, AO Hong, MU Yu-lian, YANG Shu-lin, LI Kui , TANG Zhong-lin
Journal of Integrative Agriculture 2014, 13 (
6
): 1331-1339. DOI:
10.1016/S2095-3119(13)60419-0
摘要
(
1252
)
PDF
可视化
收藏
MicroRNAs (miRNAs), evolutionarily conserved non-coding RNAs in length 21-24 bp, play a critical role in skeletal muscle development. In this study, to explore the function of mircoRNA-127 in porcine skeletal muscle development, eight tissue samples from adult pigs and longissimus muscle samples at 26 developmental stages were collected from Tongcheng and Landrace pigs. The spatial-temporal expression profiles of miRNA-127 were carried out using step-loop quantitative real-time PCR (stem- loop RT-PCR). To explore the molecular functions of miRNA-127, we predicted its target genes and performed functional annotation using bioinformatics methods. Results suggested that miRNA-127 was abundantly expressed in heart, ovary, uterus and spleen tissues and was weakly expressed in liver, lung, kidney and small intestine in both Tongcheng and Landrace pigs. And miRNA-127 showed significant expression differences in heart, ovary, spleen and uterus tissues between these two breeds. miRNA-127 basically kept at a relatively stable high level in middle and later embryonic stages and a low expression level in early embryonic stages and postnatal stages, but the expression levels of miRNA-127 were higher in Tongcheng pigs than in Landrace at most developmental stages. miRNA-127 potentially regulated 240 candidate genes. Results of Gene Ontology and KEGG pathway analysis indicated that these genes could be involved in many molecular functions and mechanisms, such as regulation of the force of heart contraction, regulation of transcription, regulation of T cell differentiation, MAPK signaling pathway and GnRH signaling pathway. Many significantly enriched GO terms and KEGG pathways were related to skeletal muscle development. This study will be helpful to understand the biological function for miRNA-127 and identify candidate gene associated with meat production traits in pigs.
参考文献
|
相关文章
|
多维度评价
Select
4.
The Establishment of Double-Transgenic Mice that Co-Express the appA and MxA Genes Mediated by Type A Spermatogonia In vivo
BAI Li-jing, JU Hui-ming, MU Yu-lian, YANG Shu-lin, REN Hong-yan, AO Hong, WANG, Chu-duan , LI Kui
Journal of Integrative Agriculture 2014, 13 (
12
): 2741-2749. DOI:
10.1016/S2095-3119(14)60912-6
摘要
(
1378
)
PDF
可视化
收藏
Type A spermatogonial stem cells are the only immortal diploid cells in the postnatal animal that undergo self-renewal through the lifetime of an animal and transmit genes to subsequent generations. In this paper, the generation and characterization of double-transgenic mice co-expressing the Escherichia coli appA gene and human MxA gene generated via the in vivo transfection of type A spermatogonial cells were reported for the first time. The dicistronic expression vector pcDNA-appA-MxA(AMP) and ExGen500 transfection reagent were injected into the testicular tissue of 7-d-old male ICR mice. The mice that underwent testismediated gene transfer were mated with wild-type female mice, and the integration and expression of the foreign genes in the offspring were evaluated. Transgenic mice that co-expressed appA and MxA showed a gene integration rate of 8.89% (16/180). The transgenic mice were environmentally friendly, as the amount of phosphorous remaining in the manure was reduced by as much as 11.1% by the appA gene (P<0.05); these animals also exhibited a strong anti-viral phenotype.
参考文献
|
相关文章
|
多维度评价
Select
5.
Screening and Analysis of Proteins Interacting with TaPDK from Physiological Male Sterility Induced by CHA in Wheat
ZHANG Long-yu, ZHANG Gai-sheng, ZHAO Xin-liang , YANG Shu-ling
Journal of Integrative Agriculture 2013, 12 (
6
): 941-950. DOI:
10.1016/S2095-3119(13)60314-7
摘要
(
1678
)
PDF
可视化
收藏
To further research the regulatory network of pyruvate dehydrogenase kinase (designated as TaPDK) in physiological male-sterility (PHYMS) of wheat induced by chemical hybridizing agent (CHA) SQ-1, an anther cDNA library was constructed, and the proteins interacting with TaPDK were screened via yeast two-hybrid technique. Subsequently, a few candidate proteins in nucleotide expression levels were detected by real-time quantitative PCR. Yeast-two hybrid screening was performed by mating yeast strain Y2HGold containing BD-TaPDK bait plasmid with yeast strain Y187 including anther cDNA library plasmid. Diploid yeast cells were plated on synthetic dropout nutrient medium (SD/-Ade/ -His/-Leu/-Trp) (QDO), and further were incubated on QDO medium containing AbA and X-α-Gal. The interactions between TaPDK and the proteins obtained from positive colonies were further confirmed by co-transformation validation. After plasmids DNA were extracted from blue colonies and sequenced, the sequences results were analyzed by bioinformatic methods. Finally, 24 colonies were obtained, including eight genes, namely non-specific lipid-transfer protein precursor (TanLTP), polyubiquitin (TaPUbi), glyceraldehyde-3-phosphate dehydrogenase, proliferating cell nuclear antigen (TaPCNA), CBS domain containing protein (TaCBS), actin, guanine nucleotide-binding protein beta subunit, chalcone synthase, and three new genes with unknown function. The results of quantitative RT-PCR showed that the expression levels of TanLTP, TaPUbi, and TaPCNA were obviously up-regulated in PHYMS anther, and TaCBS expression was only increased at the tricellular stage in PHYMS anther compared with in fertile lines. Whereas, the expression of TaPDK was obviously down-regulated in PHYMS lines. Collectively, these datas indicated that the majority of candidate proteins might be related to pollen abortion in PHYMS lines, which further suggested that TaPDK plays multiple roles in pollen development, besides participating in regulating pyruvate dehydrogenase complex activity.
参考文献
|
相关文章
|
多维度评价