本研究通过84天的室内培养试验来揭示秸秆和养分(氮(N)、磷(P)和硫(S))联合供应下土壤新碳生成的潜在微生物机制。结果表明,与对照土壤相比,单独添加秸秆刺激微生物进行养分开采,这与C:N和C:P酶活的比例降低了8-16%相吻合。随着养分补充水平的增提高,公主岭土壤新碳生成量从1155.9增加到1722.4 mg kg-1,海伦土壤则从725.1增加到1067.5 mg kg-1。回归树分析表明β-葡萄糖苷酶(BG)、酸性磷酸酶(AP)、微生物量碳(MBC)和酸杆菌对公主岭新碳生成的相对影响分别为27.8、18.5、14.7和8.1%;对海伦新碳生成的相对影响分别为25.9、29.5、10.1和13.9%。路径分析表明酸杆菌通过调节BG、AP和MBC直接或间接对土壤新碳生成产生积极影响,其中MBC的获取更多受到AP的调节。海伦土壤的新碳生成强度低于公主岭土壤,并且海伦土壤的新碳生成与AP活性直接相关,表明土壤属性(例如SOC和pH值)对土壤新碳生成的重要性。综上,本研究揭示了添加秸秆的土壤中新碳生成与NPS养分补充的响应关系,且土壤新碳生成主要依赖于酸杆菌和变形菌的生长代谢及对BG和AP的调控。
土壤微生物生物量氮(MBN)在土壤中包含了最大比例的生物活性氮(N),是土壤氮循环的重要参与者。农业活动(例如作物轮作和单作)极大地影响了农业生态系统中的MBN。但是,目前农业生态系统中作物轮作和单作对MBN影响的研究极其缺乏。因此,本文基于203个已发表的文献进行整合分析(Meta 分析),以量化在合成氮肥施用下轮作和单作系统对MBN的影响。本研究发现,作物轮作显著提高了MBN的响应比(RR),并在旱地轮作条件下达到最高水平。然而,旱地作物单作并没有改变MBN的响应比,但是,水稻单作中MBN的响应比有所增加。作物轮作和单作系统之间的差异可能是由于不同的种植管理方式、氮素添加的方式、添加量和施肥年限所致。与作物单作系统相比,作物轮作对土壤总氮(TN)的增加幅度更大,对土壤pH的降低幅度较小。MBN的RR与矿质N的RR仅在作物轮作系统中正相关,MBN的RR与土壤pH的RR仅在单作系统中正相关。随机森林和结构方程模型的结果表明,MBN变化的主要驱动因素在作物轮作系统中是土壤矿质N和TN,在单作系统中是土壤pH。总之,本研究表明,轮作由于改善了土壤氮源,可以作为提高MBN的有效途径,从而提高MBN对由于大量施用化学氮肥导致的低pH的抵抗力。
高谷物日粮诱导的亚急性瘤胃酸中毒(SARA)会损害反刍动物的瘤胃上皮屏障功能,但SARA是否会持续性损害瘤胃上皮屏障的形态结构和功能还尚不清楚。本研究旨在以泌乳山羊为动物模型,研究SARA是否对瘤胃上皮的形态结构、通透性及参与上皮屏障功能的关键基因表达具有持续性影响。选取12只安装有永久性瘤胃瘘管的泌乳中期奶山羊,随机分为对照组(Ctrl,n=4)和SARA组(n=8),对照组试验动物饲喂NFC/NDF比为1.40的基础饲粮,SARA组依次饲喂NFC/NDF比为1.40、1.79、2.31和3.23四种饲粮诱导试验动物发生SARA。SARA诱导成功后从SARA组中随机选取4只患病动物让其自由采食混合粗饲料4周使其恢复,即post-SARA组。采用pH值监测系统连续监测瘤胃pH值以判定SARA的严重程度。采集瘤胃腹囊上皮组织,利用透射电镜、尤斯灌流室、PCR和Western blot等先进技术检测瘤胃上皮的形态结构和功能。结果表明:与对照组相比,(1)SARA组瘤胃上皮乳头长度、宽度、表面积和角质层厚度显著增加(P<0.05),棘基层厚度和上皮总厚度则显著降低(P<0.05)。post-SARA组这些参数则趋向于恢复到对照组水平(P>0.05)。同时透射电镜结果显示,SARA减少了瘤胃上皮紧密连接数量,加宽了上皮细胞之间的间隙。(2)SARA组和post-SARA组瘤胃上皮短路电流(Isc)、组织导电性(Gt)以及辣根过物氧化酶(HRP)通过瘤胃上皮的流速均显著增加(P<0.05),这表明SARA可引起瘤胃上皮通透性持续升高,进而导致其屏障功能长期受损。(3)SARA组和post-SARA组瘤胃上皮紧密连接蛋白CLDN1, OCLN and ZO-1的mRNA和蛋白表达量均极显著下调(P<0.01)。由此可见,SARA可导致瘤胃上皮屏障结构和功能持续受损,这与瘤胃上皮紧密连接蛋白表达下调密切相关,而且瘤胃上皮屏障功能的恢复滞后于形态结构的恢复。
The concentration of soil Olsen-P is rapidly increasing in many parts of China, where P budget (P input minus P output) is the main factor influencing soil Olsen-P. Understanding the relationship between soil Olsen-P and P budget is useful in estimating soil Olsen-P content and conducting P management strategies. To address this, a long-term experiment (1991–2011) was performed on a fluvo-aquic soil in Beijing, China, where seven fertilization treatments were used to study the response of soil Olsen-P to P budget. The results showed that the relationship between the decrease in soil Olsen-P and P deficit could be simulated by a simple linear model. In treatments without P fertilization (CK, N, and NK), soil Olsen-P decreased by 2.4, 1.9, and 1.4 mg kg–1 for every 100 kg ha–1 of P deficit, respectively. Under conditions of P addition, the relationship between the increase in soil Olsen-P and P surplus could be divided into two stages. When P surplus was lower than the range of 729–884 kg ha–1, soil Olsen-P fluctuated over the course of the experimental period with chemical fertilizers (NP and NPK), and increased by 5.0 and 2.0 mg kg–1, respectively, when treated with chemical fertilizers combined with manure (NPKM and 1.5NPKM) for every 100 kg ha–1 of P surplus. When P surplus was higher than the range of 729–884 kg ha–1, soil Olsen-P increased by 49.0 and 37.0 mg kg–1 in NPKM and 1.5NPKM treatments, respectively, for every 100 kg ha–1 P surplus. The relationship between the increase in soil Olsen-P and P surplus could be simulated by two-segment linear models. The cumulative P budget at the turning point was defined as the “storage threshold” of a fluvo-aquic soil in Beijing, and the storage thresholds under NPKM and 1.5NPKM were 729 and 884 kg ha–1 P for more adsorption sites. According to the critical soil P values (CPVs) and the relationship between soil Olsen-P and P budget, the quantity of P fertilizers for winter wheat could be increased and that of summer maize could be decreased based on the results of treatments in chemical fertilization. Additionally, when chemical fertilizers are combined with manures (NPKM and 1.5NPKM), it could take approximately 9–11 years for soil Olsen-P to decrease to the critical soil P values of crops grown in the absence of P fertilizer.