期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 水分缓解玉米灌浆期高温对光合作用影响的田间研究
WANG Xing-long, ZHU Yu-peng, YAN Ye, HOU Jia-min, WANG Hai-jiang, LUO Ning, WEI Dan, MENG Qing-feng, WANG Pu
Journal of Integrative Agriculture    2023, 22 (8): 2370-2383.   DOI: 10.1016/j.jia.2023.02.012
摘要246)      PDF    收藏

通过灌溉提高土壤含水量(SWC)是一种潜在、有效的缓解高温胁迫的调控措施。在提高土壤含水量缓解高温影响的过程中,田间条件下基于叶绿素荧光的光合特性响应受到了有限的关注。本研究在华北平原开展了2年田间试验(2019-2020年),以郑单958ZD958)和先玉335XY335)为材料,在灌浆期设置三个试验处理(正常生长条件(CK)、大田升温(H)和大田升温+水分调控(HW))研究田间高温对玉米冠层光合的影响及水分调控效应。与H处理相比,HW处理下冠层温度降低1-3℃,净光合速率(Pn)提高20%此外,HW处理显著提高了两个品种的实际光合速率(Phi2)、线性电子流(LEF)、可变荧光(Fv)和最大光能转换效率(Fv/Fm)。同时,发现两个品种对叶绿素荧光的响应存在差异。HW处理显著提高了ZD958的类囊体质子电导率(gH+)和最大荧光(Fm),提高了XY335的叶绿体ATP合酶质子电导率(vH+)和最小荧光(F0)。结构方程分析进一步表明,土壤水分含量与PnLEFFv/Fm呈显著正相关。提高土壤水分含量可通过延缓叶片衰老,延长光合作用有效时间,改善Phi2LEFFvFv/Fm,提高叶片光合能力。综合本研究结果表明,提高SWC以增强灌浆期叶片光合作用,玉米生产中适应气候变暖的一重要技术措施

参考文献 | 相关文章 | 多维度评价
2. JIA-2020-1767 玉米产量和籽粒含水量与叶片,茎秆和根系的关系
XU Chen-chen, ZHANG Ping, WANG Yuan-yuan, LUO Ning, TIAN Bei-jing, LIU Xi-wei, WANG Pu, HUANG Shou-bing
Journal of Integrative Agriculture    2022, 21 (7): 1941-1951.   DOI: 10.1016/S2095-3119(20)63598-5
摘要240)      PDF    收藏

本研究在2017年使用12个玉米品种进行了两个播期的田间试验,2019年使用10个玉米品种进行了田间试验。2017年早播的玉米产量在6.5 到14.6 t ha-1之间,晚播的玉米产量在9.3 到12.7 t ha-1之间,2019年玉米产量在5.9 到7.4 t ha-1之间,收获时的籽粒含水量分别在29.8-34.9%, 29.4-34.5%和31.9-37.1% 范围内。较大的最大叶面积有利于高产,叶片衰老速度快有利于后期籽粒脱水,根系结构紧凑有利于高产和籽粒快速脱水。较强壮的茎秆提高了玉米的抗倒伏能力,但在收获时却保持了较高的籽粒含水量,这对玉米高产低含水量是一个挑战。高产低籽粒含水量的玉米品种具备灌浆速率快,灌浆时间长,灌浆后期籽粒脱水速率快的特点。灌浆后期较高的日间温度可以通过影响籽粒灌浆和脱水进而提高玉米产量和降低籽粒含水量,说明调整播期可能可以作为达到籽粒机械收获的一个策略。


参考文献 | 相关文章 | 多维度评价
3.
Interacting leaf dynamics and environment to optimize maize sowing date in North China Plain
TIAN Bei-jing, ZHU Jin-cheng, LIU Xi-wei, HUANG Shou-bing, WANG Pu
Journal of Integrative Agriculture    2020, 19 (5): 1227-1240.   DOI: 10.1016/S2095-3119(19)62831-5
摘要118)      PDF    收藏
Leaf growth and its interaction with the growing environment critically affect leaf area, distribution, and function, and ultimately affects grain yield of maize (Zea mays L.).  To detect the effects of leaf area dynamics, growth periods, and the environment on maize grain yield, a three-year field experiment was conducted using two maize varieties, medium plant-size variety Zhengdan 958 (ZD958) and large plant-size variety Zhongnongda 4 (ZND4), and three to five sowing dates.  The sowing date significantly affected maize yield as a result of changes in leaf area, growth stage, and growing environment.  Prior to the 12th leaf stage, significant correlations between leaf area dynamics, environment, and yield were seldom detected.  The expansion of leaf area from 12th leaf stage to silking stage was significantly positively correlated with growing degree days (GDD), solar radiation, and grain yield, indicating the importance of leaf area dynamics during this period.  After silking, solar radiation played a more important role in inducing leaf senescence than GDD, particularly in the 2nd half of the grain filling stage.  Accelerated leaf senescence in late growth period can increase maize yield.  The environment affected leaf area dynamics and yield of the large plant-size variety (ZND4) more easily than the medium plant-size variety (ZD958) at the optimum plant density, reflecting the difference in varietal capacity to adapt to the growing environment.  This study indicates that optimizing the interaction among leaf area dynamics, growth periods, and environment is a sound strategy to increase maize yield.  Favorable interactions are useful to determine the optimal sowing date of a given variety.
参考文献 | 相关文章 | 多维度评价
4.
Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments
ZHAO Hong-xiang, ZHANG Ping, WANG Yuan-yuan, NING Tang-yuan, XU Cai-long, WANG Pu
Journal of Integrative Agriculture    2020, 19 (4): 1105-1116.   DOI: 10.1016/S2095-3119(19)62750-4
摘要182)      PDF    收藏
Water is a key limiting factor in agriculture.  Water resource shortages have become a serious threat to global food security.  The development of water-saving irrigation techniques based on crop requirements is an important strategy to resolve water scarcity in arid and semi-arid regions.  In this study, field experiments with winter wheat were performed at Wuqiao Experiment Station, China Agricultural University in two growing seasons in 2013–2015 to help develop such techniques.  Three irrigation treatments were tested: no-irrigation (i.e., no water applied after sowing), limited-irrigation (i.e., 60 mm of water applied at jointing), and sufficient-irrigation (i.e., a total of 180 mm of water applied with 60 mm at turning green, jointing and anthesis stages, respectively).  Leaf area index (LAI), light transmittance (LT), leaf angle (LA), transpiration rate (Tr), specific leaf weight, water use efficiency (WUE), and grain yield of winter wheat were measured.  The highest WUE of wheat in the irrigated treatments was found under limited-irrigation and grain yield was only reduced by a small amount in this treatment compared to the sufficient irrigation treatment.  The LAI and LA of wheat plants was lower under limited irrigation than sufficient irrigation, but canopy LT was greater.  Moreover, the specific leaf weight of winter wheat was significantly lower under sufficient than limited irrigation conditions, while the leaf Tr was significantly higher.  Correlation analysis showed that the increased LAI was associated with an increase in the leaf Tr, but the specific leaf weight had the opposite relationship with transpiration.  Optimum WUE occurred over a reasonable range in leaf Tr.  In conclusion, reduced irrigation can optimize wheat canopies and regulate water consumption, with only small reductions in final yield, ultimately leading to higher wheat WUE and water saving in arid and semi-arid regions.
参考文献 | 相关文章 | 多维度评价
5. Comprehensive characterization of yam tuber nutrition and medicinal quality of Dioscorea opposita and D. alata from different geographic groups in China
SHAN Nan, WANG Pu-tao, ZHU Qiang-long, SUN Jing-yu, ZHANG Hong-yu, LIU Xing-yue, CAO Tian-xu, CHEN Xin, HUANG Ying-jin, ZHOU Qing-hong
Journal of Integrative Agriculture    2020, 19 (11): 2839-2848.   DOI: 10.1016/S2095-3119(20)63270-1
摘要179)      PDF    收藏
China is an important domestication center of yams, and two main yam species of Dioscorea opposita and D. alata are commonly cultivated in China.  However, the differences of nutritional and medicinal characteristics between the two species and their subgroups remain unclear, which would greatly affect the resource conservation and commercial utilization of yams.  In this study, typical yam resources including the species of D. opposita (wild and cultivated Ruichang yam from southern China, and Tiegun yam from northern China) and two landraces of D. alata (Longyan yam and Anyuan yam from southern China) were selected as materials.  Nutritional traits and medicinal characteristics were determined and analyzed respectively.  The results showed that there was no significant differences in the content of most nutrients between D. opposita and D. alata, but most cultivated Ruichang yam of D. opposita showed higher levels of starch, soluble sugar, sucrose, and ascorbate in tuber than that in yam from D. alata.  Moreover, an UPLC-MS method was developed for identification and determination of medicinal characteristics in the two species.  The results showed that allantoin can be detected in all selected samples.  Cultivated Ruichang yam of D. opposita possessed the highest allantoin content among the tested materials, and was significantly different with that in Tiegun yam and D. alata. Dioscin was not detected in D. alata. Overall, there was little difference in nutritional composition between D. opposita and D. alata, but the medicinal quality of D. opposita was better than that of D. alata.  Due to the outstanding comprehensive quality, the local variety of cultivated Ruichang yam can be further developed and utilized.
参考文献 | 相关文章 | 多维度评价
6. Effects of variety and chemical regulators on cold tolerance during maize germination
WANG Li-jun, ZHANG Ping, WANG Ruo-nan, WANG Pu, HUANG Shou-bing
Journal of Integrative Agriculture    2018, 17 (12): 2662-2669.   DOI: 10.1016/S2095-3119(17)61880-X
摘要260)      PDF    收藏
Maize growth and development is affected by low temperature (LT) especially at the early stages of development.  To describe the response of different varieties to LT stress and determine an effective method to cope with LT stress, maize hybrids
Zhengdan 958 (ZD 958) and Danyu 39 (DY 39) were planted and grown at 10 and 25°C, respectively.  Effects of the chemicals potassium chloride (KCl), gibberellin (GA3), 2-diethylaminoethyl-3,4-dichlorophenylether (DCPTA), and all three combined chemicals (KGD) on coping with LT stress were tested by seed priming.  The varieties performed significantly different at 10°C.  Compared to leaf, root growth was more severely affected by LT stress.  Root/leaf ratio is likely a more reliable parameter to evaluate cold tolerance based on its close correlation with leaf malondialdehyde (MDA) content (R=–0.8).  GA3 advanced seed germination by about 2 days compared with control treatment of water.  GA3 and DCPTA both resulted in lower leaf MDA content and higher leaf and root area, and root/leaf ratio.  KCl resulted in the highest evenness of plant height.  KGD performed the best in increasing cold tolerance of maize morphologically and physiologically.  Strategies to increase maize tolerance of cold stress, such as variety breeding or chemical selection, would increase maize yield especially at high-latitude regions and have great implications for food security.
参考文献 | 相关文章 | 多维度评价
7. A simulation of winter wheat crop responses to irrigation management using CERES-Wheat model in the North China Plain
ZHOU Li-li, LIAO Shu-hua, WANG Zhi-min, WANG Pu, ZHANG Ying-hua, YAN Hai-jun, GAO Zhen, SHEN Si, LIANG Xiao-gui, WANG Jia-hui, ZHOU Shun-li
Journal of Integrative Agriculture    2018, 17 (05): 1181-1193.   DOI: 10.1016/S2095-3119(17)61818-5
摘要540)      PDF(pc) (1260KB)(256)    收藏
Received  2 August, 2017    Accepted  31 October, 2017
 © 2018, CAAS. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
doi:
参考文献 | 相关文章 | 多维度评价
8. Establishment of ANEDr model for evaluating absorbed-nitrogen effects on wheat dry matter production
ZHAO Jiao, TAO Hong-bin, LIAO Shu-hua, WANG Pu
Journal of Integrative Agriculture    2016, 15 (10): 2257-2265.   DOI: 10.1016/S2095-3119(16)61352-7
摘要1398)      PDF    收藏
    Applying mathematic models to evaluate absorbed-N effects on dry matter production at different developmental stages would help determine proper nitrogen management according to crop demands and yield target. Two field trials were carried out for establishing absorbed-N effects on dry matter production (ANEDr) model, using uniform design in 2010–2011 and 2012–2013 winter wheat growing seasons in Hebei Province, China. Another field trial was carried out in 2010–2011 for model validation. Dry matter and N concentration in leaf and non-leaf organs were measured at setting, jointing, anthesis, and maturity. Theory of best linear unbiased prediction (BLUP) was applied to analyse the N effects of leaf and non-leaf organs on dry matter production. Within ANEDr model, four N-affected phases at each stage were concerned, leaf absorbed-N effect before this stage, non-leaf organ absorbed-N effect before this stage, leaf absorbed-N effect at this stage, and non-leaf organ absorbed-N effect at this stage. In addition, developmental processes, genotype characters and temperature were three factors that determine each N effect. It was demonstrated that ANEDr model can precisely quantify absorbed-N effects on dry matter production with high correlation coefficient (r=0.95). Comparing with other models, ANEDr model considered both leaf and non-leaf organs according to developmental processes of winter wheat, showed higher flexibility and simplicity, thus could be applied to different environments, cultivars and crops after parameter adjustment.
参考文献 | 相关文章 | 多维度评价
9. Slight shading after anthesis increases photosynthetic productivity and grain yield of winter wheat (Triticum aestivum L.) due to the delaying of leaf senescence
XU Cai-long, TAO Hong-bin, WANG Pu, WANG Zhen-lin
Journal of Integrative Agriculture    2016, 15 (1): 63-75.   DOI: 10.1016/S2095-3119(15)61047-4
摘要1793)      PDF    收藏
The solar radiation intensity and duration are continuously decreasing in the major wheat planting area of China. As a consequence, leaf senescence, photosynthesis, grain filling and thus wheat yield shall be affected by light deficiency. Therefore, two winter wheat (Triticum aestivum L.) cultivars, Tainong 18 (a large-spike cultivar) and Ji’nan 17 (a multiple-spike cultivar), were subjected to shading during anthesis and maturity under field condition in 2010–2011 and 2011–2012. Under the slight shading treatment (S1, 88% of full sunshine), leaf senescence was delayed, net photosynthesis rate (Pn) and canopy apparent photosynthesis rate (CAP) were improved, and thus thousand-kernel weight (TKW) and grain yield were higher as compared with the control. However, mid and severe shading (S2 and S3, 67 and 35% of full sunshine, respectively) led to negative effects on these traits substantially. Moreover, superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities in flag leaf were significantly greater under slight shading than those in other treatments, while the malondialdehyde (MDA) content was less than that under other treatments. In addition, the multiple-spike cultivar is more tolerant to shading than large-spike cultivar. In conclusion, slight shading after anthesis delayed leaf senescence, enhanced photosynthesis and grain filling, and thus resulted in higher grain yield.
参考文献 | 相关文章 | 多维度评价
10. SPEIPM-based research on drought impact on maize yield in North China Plain
MING Bo, GUO Yin-qiao, TAO Hong-bin, LIU Guang-zhou, LI Shao-kun, WANG Pu
Journal of Integrative Agriculture    2015, 14 (4): 660-669.   DOI: 10.1016/S2095-3119(14)60778-4
摘要2056)      PDF    收藏
The calculation method of potential evapotranspiration (PET) was improved by adopting a more reliable PET estimate based on the Penman-Monteith equation into the standardized precipitation evapotranspiration index (SPEI) in this study (SPEIPM). This improvement increased the applicability of SPEI in North China Plain (NCP). The historic meteorological data during 1962–2011 were used to calculate SPEIPM. The detrended yields of maize from Hebei, Henan, Shandong, Beijing, and Tianjin provinces/cities of NCP were obtained by linear sliding average method. Then regression analysis was made to study the relationships between detrended yields and SPEI values. Different time scales were applied, and thus SPEIPM was mentioned as SPEIPMk-j (k=time scale, 1, 2, 3, 4,…, 24 mon; j=month, 1, 2, 3,..., 12), among which SPEIPM3-8 reflected the water condition from June to August, a period of heavy precipitation and vigorous growth of maize in NCP. SPEIPM3-8 was highly correlated with detrended yield in this region, which can effectively evaluate the effect of drought on maize yield. Additionally, this relationship becomes more significant in recent 20 yr. The regression model based on the SPEI series explained 64.8% of the variability of the annual detrended yield in Beijing, 45.2% in Henan, 58.6% in Shandong, and 54.6% in Hebei. Moreover, when SPEIPM3-8 is in the range of –0.6 to 1.1, –0.9 to 0.8 and –0.8 to 2.3, the detrended yield increases in Shandong, Henan and Beijing. The yield increasing range was during normal water condition in Shandong and Henan, where precipitation was abundant. It indicated that the field management matched well with local water condition and thus allowed stable and high yield. Maize yield increase in these two provinces in the future can be realized by further improving water use efficiency and enhancing the stress resistance as well as yield stability. In Hebei and Beijing, the precipitation is less and thus the normal water condition cannot meet the high yield target. Increasing of water input and improving water use efficiency are both strategies for future yield increase. As global climate change became stronger and yield demands increased, the relationship between drought and maize yield became much closer in NCP too. The research of drought monitoring method and strategies for yield increase should be enhanced in the future, so as to provide strong supports for food security and agricultural sustainable development in China. Received 12
参考文献 | 相关文章 | 多维度评价