期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 梨花粉管中表达的AGP蛋白的鉴定和功能分析
JIAO Hui-jun, WANG Hong-wei, RAN Kun, DONG Xiao-chang, DONG Ran, WEI Shu-wei, WANG Shao-min
Journal of Integrative Agriculture    2023, 22 (3): 776-789.   DOI: 10.1016/j.jia.2023.02.007
摘要189)      PDF    收藏

AGPs蛋白在植物中普遍存在且在有性生殖过程中扮演重要角色本研究花粉管中表达的PbrAGPs基因进行全面鉴定探究其对花粉管生长的影响。共鉴定到187个基因在梨花粉中表达,通过转录组分析发现38PbrAGPs在花粉中特异性表达花粉中表达PbrAGPs基因被划分为特异性表达和高表达两组。采用组织定位和荧光定量分析两组基因的表达模式发现,多数的PbrAGPs非特异性的在花粉中表达,并且这些基因的表达模式与RPKM值的表达趋势一致,这也表明PbrAGPs参与花粉管的生长发育过程。此外,构建系统发育树全面鉴定参与调控梨花粉管生长的PbrAGPs基因。因此,选取了19PbrAGPs (PbrAGP1~PbrAGP19)来验证其对花粉管生长的影响。原核表达纯化19PbrAGP-his重组蛋白,用其体外处理梨花粉,发现共11PbrAGP-his重组蛋白可显著促进梨花粉管生长。此外,通过反义寡核苷酸技术抑制花粉管中PbrAGP的表达,发现抑制PbrAGP1PbrAGP5的表达水平后,可以显著抑制梨花粉管的生长。PbrAGP1PbrAGP5定位于质膜,并且对花粉管细胞壁果胶的分布基本没有影响。综上所述,本研究主要鉴定了梨花粉中表达的PbrAGPs基因,为探索其在花粉管生长中的作用奠定了基础。

参考文献 | 相关文章 | 多维度评价
2. Application of virus-induced gene silencing for identification of FHB resistant genes
FAN Yan-hui, HOU Bing-qian, SU Pei-sen, WU Hong-yan, WANG Gui-ping, KONG Ling-rang, MA Xin, WANG Hong-wei
Journal of Integrative Agriculture    2019, 18 (10): 2183-2192.   DOI: 10.1016/S2095-3119(18)62118-5
摘要136)      PDF    收藏
Virus-induced gene silencing (VIGS) showed several advantages to identify gene functions such as short experimental cycle, more broad hosts, etc.  In this study, the feasibility and efficiency of employing Barley stripe mosaic virus (BSMV)-based VIGS system to evaluate Fusarium head blight (FHB) resistance were explored in wheat.  With variable conditions tested, it showed that the maximal silencing efficiency 78% on spike was obtained when the recombinant BSMV was inoculated on flag leaf at flagging stage.  However, the plant may reduce its own immunity to FHB when inoculated with BSMV.  To induce this impact, different Fusarium graminearum strains were tested and SF06-1 strain was selected for FHB resistance evaluation.  Using this system, TaAOC, TaAOS, and TaOPR3 involved in jasmonic acid (JA) signaling pathway were identified to positively regulate FHB resistance, which was underpinned by the results when silencing TaAOS in wheat by stable transgenic plants.
参考文献 | 相关文章 | 多维度评价
3. Multi-functional roles of TaSSI2 involved in Fusarium head blight and powdery mildew resistance and drought tolerance
 
HU Li-qin, MU Jing-jing, SU Pei-sen, WU Hong-yan, YU Guang-hui, WANG Gui-ping, WANG Liang, MA Xin, LI An-fei, WANG Hong-wei, ZHAO Lan-fei, KONG Ling-rang
Journal of Integrative Agriculture    2018, 17 (2): 368-380.   DOI: 10.1016/S2095-3119(17)61680-0
摘要692)      PDF    收藏
The mutation of the gene encoding a stearoyl-acyl carrier protein fatty acid desaturase (ssi2) has been proved to enhance pathogen resistance in several plants, while it’s potential to regulate biotic and abiotic stresses in wheat is still unclear.  In this study, we cloned TaSSI2 gene in wheat and provided several evidences of its involvement in multiple biological functions.  By using barley stripe mosaic virus (BSMV)-induced gene silencing (VIGS) in wheat, it was found that TaSSI2 negatively regulated both powdery mildew and Fusarium head blight (FHB) resistance, which was consistent with the phenotype observed in knock-out mutants of Kronos.  The expression of TaSSI2 was down-regulated by in vitro treatments of methyl jasmonate (MeJA), but positively regulated by salicylic acid (SA) and abscisic acid (ABA), implying the cross-talk between different hormone signaling pathways involved in wheat to regulate biotic stresses is still to be elucidated.  Furthermore, the up-regulated expression of PR4 and PR5 indicated that TaSSI2 probably regulated FHB resistance by depressing the SA signaling pathway in wheat.  In addition, the over-expression of TaSSI2 increased the content of linolenic acid (18:3) and subsequently enhanced drought tolerance of transgenic Brachypodium.  This phenomenon might be associated with its subcellular localization in the whole cytosol, partly overlapping with Golgi apparatus and the secreted vesicles.  As a stearoyl-acyl carrier protein fatty acid desaturase, TaSSI2 was proposed to be involved in cell lipid metabolism and carried targets out of the cell from membrane or wax synthesis, resulting in enhanced drought tolerance in plant.
参考文献 | 相关文章 | 多维度评价
4. Functional analysis of a wheat pleiotropic drug resistance gene involved in Fusarium head blight resistance
WANG Gui-ping, HOU Wen-qian, ZHANG Lei, WU Hong-yan, ZHAO Lan-fei, DU Xu-ye, MA Xin, LI An-fei, WANG Hong-wei, KONG Ling-rang
Journal of Integrative Agriculture    2016, 15 (10): 2215-2227.   DOI: 10.1016/S2095-3119(16)61362-X
摘要1708)      PDF    收藏
    The pleiotropic drug resistance (PDR) sub-family of adenosine triphosphate (ATP)-binding cassette (ABC) transporter had been reported to participate in diverse biological processes of plant. In this study, we cloned three novel PDR genes in Fusarium head blight (FHB) resistant wheat cultivar Ning 7840, which were located on wheat chromosomes 6A, 6B and 6D. In phylogeny, these genes were members of cluster I together with AePDR7 and BdPDR7. Subcellular localization analysis showed that TaPDR7 was expressed on the plasmalemma. The quantitative real time PCR (RT-PCR) analysis showed that this gene and its probable orthologues in chromosomes 6B and 6D were both up-regulated sharply at 48 h after infected by Fusarium graminearum and trichothecene deoxynivalenol (DON) in spike. When knocking down the transcripts of all TaPDR7 members by barely stripe mosaic virus-induced gene silencing (BSMV-VIGS) system, it could promote the F. graminearum hyphae growth and made larger pathogen inoculation points in Ning 7840, which suggested that TaPDR7 might play an important role in response to F. graminearum. Although salicylic acid (SA), methyl jasmonate (MeJA) and abscisic acid (ABA) had been reported to possibly regulate wheat FHB resistance, here, we found that the three members of TaPDR7 were negatively regulated by these three hormones but positively regulated by indoleacetic acid (IAA).
参考文献 | 相关文章 | 多维度评价
5. Cloning and characterization of a novel UDP-glycosyltransferase gene induced by DON from wheat
MA Xin, DU Xu-ye, LIU Guo-juan, YANG Zai-dong, HOU Wen-qian, WANG Hong-wei, FENG De-shun
Journal of Integrative Agriculture    2015, 14 (5): 830-838.   DOI: 10.1016/S2095-3119(14)60857-1
摘要2424)      PDF    收藏
Fusarium head blight (FHB), caused primarily by Fusarium graminearum, is a destructive disease of wheat throughout the world. However, the mechanisms of host resistance to FHB are still largely unclear. Deoxynivalenol (DON) produced by F. graminearum which enhances the pathogen to spread could be converted into inactive form D3G by UDP-glycosyltransferases (UGTs). A DON responsive UGT gene, designated as TaUGT4, was first cloned from wheat in this study. The putative open reading frame (ORF) of TaUGT4 was 1 386 bp, encoding 461 amino acids protein. TaUGT4 was placed on chromosome 2D using a set of nulli-tetrasomic lines of wheat cultivar Chinese Spring (CS). When fused with eGFP at C terminal, TaUGT4 was shown to localize in cytoplasm of the transformed tobacco cells. The transcriptional analysis revealed that TaUGT4 was strongly induced by F. graminearum or DON in both of FHB-resistant cultivar Sumai 3 and susceptible cultivar Kenong 199, especially in Sumai 3 under DON treatment. Similar increase of TaUGT4 expression was observed in Sumai 3 and Kenong 199 in response to salicylic acid (SA) treatment. But interestingly, the transcripts level of TaUGT4 in Sumai 3 showed significantly higher than that in Kenong 199 after treated with methyl jasmonate (MeJA). According to the expression patterns, TaUGT4 might lead to different effects between FHB-resistant genotype and susceptible genotype in the process against F. graminearum inoculation. It had also been discussed in this paper that JA signaling pathway might play a significant role in the resistance against F. graminearum compared to SA signaling pathway.
参考文献 | 相关文章 | 多维度评价
6. Association analysis of grain traits with SSR markers between Aegilops tauschii and hexaploid wheat (Triticum aestivum L.)
ZHAO Jing-lan, WANG Hong-wei, ZHANG Xiao-cun, DU Xu-ye, LI An-fei, KONG Ling-rang
Journal of Integrative Agriculture    2015, 14 (10): 1936-1948.   DOI: 10.1016/S2095-3119(15)61070-X
摘要1348)      PDF    收藏
Seven important grain traits, including grain length (GL), grain width (GW), grain perimeter (GP), grain area (GA), grain length/width ratio (GLW), roundness (GR), and thousand-grain weight (TGW), were analyzed using a set of 139 simple sequence repeat (SSR) markers in 130 hexaploid wheat varieties and 193 Aegilops tauschii accessions worldwide. In total, 1 612 alleles in Ae. tauschii and 1 360 alleles in hexaploid wheat (Triticum aestivum L.) were detected throughout the D genome. 197 marker-trait associations in Ae. tauschii were identified with 58 different SSR loci in 3 environments, and the average phenotypic variation value (R2) ranged from 0.68 to 15.12%. In contrast, 208 marker-trait associations were identified in wheat with 66 different SSR markers in 4 environments and the average phenotypic R2 ranged from 0.90 to 19.92%. Further analysis indicated that there are 6 common SSR loci present in both Ae. tauschii and hexaploid wheat, which are significantly associated with the 5 investigated grain traits (i.e., GA, GP, GR, GL, and TGW) and in total, 16 alleles derived from the 6 aforementioned SSR loci were shared by Ae. tauschii and hexaploid wheat. These preliminary data suggest the existence of common alleles may explain the evolutionary process and the selection between Ae. tauschii and hexaploid wheat. Furthermore, the genetic differentiation of grain shape and thousand-grain weight were observed in the evolutionary developmental process from Ae. tauschii to hexaploid wheat.
参考文献 | 相关文章 | 多维度评价
7. Expression Comparisons of Pathogenesis-Related (PR) Genes in Wheat in Response to Infection/Infestation by Fusarium, Yellow dwarf virus (YDV) Aphid-Transmitted and Hessian Fly
WU Shi-wen, WANG Hong-wei, YANG Zai-dong , KONG Ling-rang
Journal of Integrative Agriculture    2014, 13 (5): 926-936.   DOI: 10.1016/S2095-3119(13)60570-5
摘要2524)      PDF    收藏
Expression profiles of ten pathogenesis-related (PR) genes during plant defense against Fusarium, Yellow dwarf virus (YDV) aphid-transmitted and Hessian fly (Hf) were compared temporally in both resistant and susceptible genotypes following pathogen infection or insect infestation. Quantitative real-time PCR (qRT-PCR) revealed that PR1, PR2, PR3, PR5, PR6, PR8, PR9, and PR15 appeared to be induced or suppressed independently in response to Fusarium, YDV aphid-transmitted or Hf during the interactions. The PR gene(s) essential to defense against one organism may play little or no role in defense against another pathogen or pest, suggesting the alternative mechanisms may be involved in different interactions of wheat- Fusarium, wheat-YDV aphid-transmitted and wheat-Hf. However, strong up- or down-regulation of PR12 and PR14 encoding low molecular membrane acting protein, defensin and lipid transfer protein (LTP), respectively, had been detected after either pathogen infection or insect infestation, therefore showed broad responses to pathogens and insects. It was postulated that low molecular proteins such as defensins and LTPs might play a role in the early stages of pathogenesis in the signaling process that informs plants about the attack from biotic stresses. In addition, a synergistic action between different PR genes might exist in plants to defense certain pathogens and insects on the basis of comprehensive expression profiling of various pathogenesis-related genes revealed by qRT-PCR in this study.
参考文献 | 相关文章 | 多维度评价