期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26
QU Yun-feng, WU Pei-pei, HU Jing-huang, CHEN Yong-xing, SHI Zhan-liang, QIU Dan, LI Ya-hui, ZHANG Hong-jun, ZHOU Yang, YANG Li, LIU Hong-wei, ZHU Tong-quan, LIU Zhi-yong, ZHANG Yan-ming, LI Hong-jie
Journal of Integrative Agriculture    2020, 19 (4): 931-940.   DOI: 10.1016/S2095-3119(19)62644-4
摘要122)      PDF    收藏
Resistance to powdery mildew is an important trait of interest in many wheat breeding programs.  The information on genes conferring resistance to powdery mildew in wheat cultivars is useful in parental selection.  Winter wheat breeding line DH51302 derived from Liangxing 99 and cultivar Shimai 26 derived from Jimai 22 showed identical infection patterns against 13 isolates of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew.  DH51302 and Shimai 26 were crossed to a powdery mildew susceptible cultivar Zhongzuo 9504 and the F2:3 families were used in molecular localization of the resistance genes.  Fourteen polymorphic markers, which were linked to Pm52 from Liangxing 99, were used to establish the genetic linkage maps for the resistance genes PmDH51302 and PmSM26 in DH51302 and Shimai 26, respectively.  These genes were placed in the same genetic interval where Pm52 resides.  Analysis of gene-linked molecular markers indicated that PmDH51302 and PmSM26 differed from other powdery mildew resistance genes on chromosome arm 2BL, such as Pm6, Pm33, Pm51, MlZec1, MlAB10, and Pm64.  Based on the results of reaction patterns to different Bgt isolates and molecular marker localization, together with the pedigree information, DH51302 and Shimai 26 carried the same gene, Pm52, which confers their resistance to powdery mildew.
 
参考文献 | 相关文章 | 多维度评价
2.
Genetic progress in stem lodging resistance of the dominant wheat cultivars adapted to Yellow-Huai River Valleys Winter Wheat Zone in China since 1964
ZHANG Hong-jun, LI Teng, LIU Hong-wei, MAI Chun-yan, YU Guang-jun, LI Hui-li, YU Li-qiang, MENG Ling-zhi, JIAN Da-wei, YANG Li, LI Hong-jie, ZHOU Yang
Journal of Integrative Agriculture    2020, 19 (2): 438-448.   DOI: 10.1016/S2095-3119(19)62627-4
摘要144)      收藏
Analysis of genetic progress for lodging-related traits provides important information for further improvement of lodging resistance.  Forty winter wheat cultivars widely grown in the Yellow-Huai River Valleys Winter Wheat Zone (YHWZ) of China during the period of 1964–2015 were evaluated for several lodging-related traits in three cropping seasons.  Plant height, height at center of gravity, length of the basal second internode, and lodging index decreased significantly in this period, and the average annual genetic gains for these traits were –0.50 cm or –0.62%, –0.27 cm or –0.60%, –0.06 cm or –0.63%, and –0.01 or –0.94%, respectively.  Different from other traits, stem strength showed a significant increasing trend with the breeding period, and the annual genetic gains were 0.03 N or 0.05%.  Correlation analysis showed that lodging index was positively correlated with plant height, height at center of gravity, and length of the basal second internode, but negatively correlated with stem strength.  Meanwhile, significantly positive correlations were observed between plant height, height at center of gravity, and length of the basal first and second internodes.  By comparison with the wild types, dwarfing genes had significant effects on all lodging-related traits studied except for length of the basal first internode and stem strength.  Principle component analysis demonstrated that plant height and stem strength were the most important factors influencing lodging resistance.  Clustering analysis based on the first two principle components further indicated the targets of wheat lodging-resistant breeding have changed from reducing plant height to strengthening stem strength over the breeding periods.  This study indicates that the increase of stem strength is vital to improve lodging resistance in this region under the high-yielding condition when plant height is in an optimal range.
 
参考文献 | 相关文章 | 多维度评价
3. Host status of Brachypodium distachyon to the cereal cyst nematode
CHEN Chang-long, LIU Shu-sen, LIU Qian, NIU Jun-hai, LIU Pei, ZHAO Jian-long, LIU Zhi-yong, LI Hong-jie, JIAN Heng
Journal of Integrative Agriculture    2018, 17 (2): 381-388.   DOI: 10.1016/S2095-3119(17)61745-3
摘要726)      PDF    收藏
Cereal cyst nematode (Heterodera avenae, CCN) distributes worldwide and has caused severe damage to cereal crops, and a model host will greatly aid in the study of this nematode.  In this research, we assessed the sensitivity of 25 inbred lines of Brachypodium distachyon to H. avenae from Beijing, China.  All lines of B. distachyon were infested by second-stage juveniles (J2s) of H. avenae from Daxing District of Beijing population, but only 13 inbred lines reproduced 0.2–3 cysts/plant, showing resistance.  The entire root system of the infested B. distachyon appeared smaller and the fibrous roots were shorter and less numerous.  We found that a dose of 1 000 J2s of H. avenae was sufficient for nematode infestation.  We showed that Koz-1 of B. distachyon could reproduce more cysts than TR2A line.  Line Koz-1 also supported the complete life cycles of 5 CCN geographical populations belonging to the Ha1 or Ha3 pathotype group.  Our results suggest that B. distachyon is a host for CCN.
参考文献 | 相关文章 | 多维度评价
4. Identification of salinity-related genes in ENO2 mutant (eno2) of Arabidopsis thaliana
ZHANG Yong-hua, CHEN Chao, SHI Zi-han, CHENG Hui-mei, BING Jie, MA Xiao-feng, ZHENG Chao-xing, LI Hong-jie, ZHANG Gen-fa
Journal of Integrative Agriculture    2018, 17 (01): 94-110.   DOI: 10.1016/S2095-3119(17)61720-9
摘要668)      PDF    收藏
Abiotic stress poses a great threat to plant growth and can lead to huge losses in yield.  Gene enolase2 (ENO2) is important in resistance to abiotic stress in various organisms.  ENO2 T-DNA insertion mutant (eno2) plants of Arabidopsis thaliana showed complete susceptibility to sodium chloride treatment when were analyzed either as whole plants or by measuring root growth during NaCl treatment.  Quantitative real-time RT-PCR (RT-qPCR) was performed to investigate the expression profile of ENO2 in response to NaCl stress in Arabidopsis.  The transcript level of ENO2 was rapidly elevated in 300 mmol L–1 NaCl treatment.  ENO2 also responded to 300 mmol L–1 NaCl treatment at the protein level.  To illuminate the mechanism underlying ENO2 resistance to salt at the transcriptional level, we studied the wild-type and eno2 Arabidopsis lines that were treated with 300 mmol L–1 NaCl for 18 h using 454 GS FLX, which resulted in an expressed sequence tag (EST) dataset.  A total of 961 up-regulated and 746 down-regulated differentially expressed genes (DEGs) were identified in the pairwise comparison WT-18 h:eno2-18 h.  The DEGs were identified and functionally annotated using the databases of Gene Ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG).  The identified unigenes were subjected to GO analysis to determine biological, molecular, and cellular functions.  The biological process was enriched in a total of 20 GO terms, the cellular component was enriched in 13 GO terms, and the molecular function was enriched in 11 GO terms.  Using KEGG mapping, DEGs with pathway annotations contributed to 115 pathways.  The top 3 pathways based on a statistical analysis were biosynthesis of the secondary metabolites (KO01110), plant-pathogen interactions (KO04626), and plant hormone signal transduction (KO04075).  Based on these results, ENO2 contributes to increased resistance to abiotic stress.  In particular, ENO2 is involved in some of the metabolic stress response pathways in Arabidopsis.  Our work also demonstrates that this EST dataset will be a powerful resource for further studies of ENO2, such as functional analyses, investigations of biological roles, and molecular breeding.  Additionally, 3-phosphoglycerate kinase (PGK), 3-phosphoglycerate kinase 1 (PGK1), triosephosphate isomerase (TPI), and pyruvate kinase (PK) in glycolysis interactions with ENO2 were verified using the yeast two-hybrid experiment, and ENO2 may regulate the expression of PGK, PGK1, TPI, and PK.  Taken together, the results from this study reflects that ENO2 gene has an important role in the response to the high salt stress.
参考文献 | 相关文章 | 多维度评价
5. Proteomics Identification of Differentially Expressed Leaf Proteins in Response to Setosphaeria turcica Infection in Resistant Maize
ZHANG Xiao-li, SI Bing-wen, FAN Cheng-ming, LI Hong-jie , WANG Xiao-ming
Journal of Integrative Agriculture    2014, 13 (4): 789-803.   DOI: 10.1016/S2095-3119(13)60513-4
摘要2221)      PDF    收藏
Northern corn leaf blight (NCLB), caused by the heterothallic ascomycete fungus Setosphaeria turcica, is a destructive foliar disease of maize and represents a serious threat to maize production worldwide. A comparative proteomic study was conducted to explore the molecular mechanisms underlying the defense responses of the maize resistant line A619 Ht2 to S. turcica race 13. Leaf proteins were extracted from mock and S. turcica-infected leaves after inoculated for 72 h and analyzed for differentially expressed proteins using two-dimensional electrophoresis and mass spectrometry identification. 137 proteins showed reproducible differences in abundance by more than 2-fold at least, including 50 up-regulated proteins and 87 down-regulated proteins. 48 protein spots were successfully identified by MS analysis, which included 10 unique, 6 up-regulated, 20 down-regulated and 12 disappeared protein spots. These identified proteins were classified into 9 functional groups and involved in multiple functions, particularly in energy metabolism (46%), protein destination and storage (12%), and disease defense (18%). Some defense-related proteins were upregulated such as β-glucosidase, SOD, polyamines oxidase, HSC 70 and PPIases; while the expressions of photosynthesis- and metabolism-related proteins were down-regulated, by inoculation with S. turcica. The results indicated that a complex regulatory network was functioned in interaction between the resistant line A619 Ht2 and S. turcica. The resistance processes of A619 Ht2 mainly resided on directly releasing defense proteins, modulation of primary metabolism, affecting photosyntesis and carbohydrate metabolism.
参考文献 | 相关文章 | 多维度评价