期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 发芽糙米通过改善肠道微生物群失调缓解高脂血症
REN Chuan-ying, ZHANG Shan, HONG Bin, GUAN Li-jun, HUANG Wen-gong, FENG Jun-ran, SHA Di-xin, YUAN Di, LI Bo, JI Ni-na, LIU Wei, LU Shu-wen
Journal of Integrative Agriculture    2023, 22 (3): 945-957.   DOI: 10.1016/j.jia.2023.02.015
摘要236)      PDF    收藏

高脂血症是一种与饮食相关的常见代谢紊乱疾病。人们认为含有层和胚芽的糙米有助于缓解高脂血症。本研究通过高脂饮食建立了高脂血症大鼠模型,通过该模型在血脂、脂肪酶、载脂蛋白和炎症方面探索了发芽糙米(Gbrown)和发芽黑米(一种发芽的黑色糙米,Gblack)的降血脂潜力。进而通过16S rDNA测序测定了接受不同饮食干预高脂血症大鼠的肠道微生物。本研究结果发现,GbrownGblack均可减轻大鼠的高脂血症,表现出降低TCTGLDL-C和载脂蛋白B,以及升高HDL-CHLLPLLCAT和载脂蛋白质A1的效果Gbrown/Gblack还可以减轻高脂血症大鼠的炎症,表现出TNF-αIL-6ET-1的降低。同时,16S rDNA测序发现Gbrown/Gblack饮食提高了高脂血症大鼠肠道微生物的丰度和多样性。在门级水平,Gbrown/Gblack在高脂血症大鼠中降低了厚壁菌门(Firmicutes),增加了拟杆菌门(Bacteroidetes),并降低了F/B比率。在属级水平,Gbrown/Gblack在高脂血症大鼠中降低了链球菌属(Streptococcus),并增加了瘤胃球菌属(Ruminococcus)和异杆菌属(Allobaculum)。同时,本研究还确定一些与脂质代谢相关的差异微生物属,如Gblack组中的LachnospiraceaeRuminococcusGbrown组中的PhascolarctobacteriumDoreaTuricibacterEscherichia Shigella。值得注意的是,Gblack对高脂血症的有益效果强于Gbrown。总之,Gbrown/Gblack的饮食干预可以通过减轻肠道微生物的失调有助于缓解高脂血症。

参考文献 | 相关文章 | 多维度评价
2.

The metabolomics variations among rice, brown rice, wet germinated brown rice, and processed wet germinated brown rice

REN Chuan-ying, LU Shu-wen, GUAN Li-jun, HONG Bin, ZHANG Ying-lei, HUANG Wen-gong, LI Bo, LIU Wei, LU Wei-hong
Journal of Integrative Agriculture    2022, 21 (9): 2767-2776.   DOI: 10.1016/j.jia.2022.07.025
摘要178)      PDF    收藏

本研究以华北玉麦轮作农田石灰性土壤为研究对象,针对玉米和小麦季的两次施肥事件,采用15N气体通量法(15NGF)对田间原位土壤N2通量进行为期一周的观测。施用肥料为15N标记尿素(丰度为99 atom%),施用量为130(玉米季)和150(小麦季)kg N ha–1;并于施肥后的第一、三和五天(缩写DAF 1、DAF 3和DAF 5)进行模拟灌水,控制灌水后土壤湿度达~60% WFPS。结果显示:当罩箱时间为2、4和6 h时,土壤N2通量的检测限分别为163–1565、81–485和54–281 μg N m–2 h–1。土壤N2通量为159–2943(平均:811)μg N m–2 h–1,98.3%的通量数据高于其检测限(即120个观测数据中仅2个达不到通量检测限)。灌溉时间显著影响玉米季观测期内的土壤N2平均通量,DAF 3处理较DAF 1和DAF 5处理高约80%(p<0.01);而在小麦季,不同灌溉时间的N2通量无差异。而且,玉米季观测期内的N2通量和氧化亚氮(N2O)与N2产物比(N2O/(N2O+N2))均较小麦季高约65%和11倍(p<0.01)。该差异主要归因于玉米季观测期内更高的土壤湿度、温度和氮底物的有效性,利用反硝化贡献N2排放和N2O/(N2O+N2)比值。该研究表明15NGF方法可应用于原位定量集约化石灰性农田土壤的N2通量


参考文献 | 相关文章 | 多维度评价
3. Effects of constant and stage-specific-alternating temperature on the survival, development and reproduction of the oriental armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae)
LI Bo-liao, XU Xiang-li, JI Jia-yue, WU Jun-xiang
Journal of Integrative Agriculture    2018, 17 (07): 1545-1555.   DOI: 10.1016/S2095-3119(17)61841-0
摘要479)      PDF    收藏
Migratory insects make diverse adaptive strategies in response to changes in external environment.  Temperature has an impact on the survival, development, reproduction, and migration initiation of insects.  Previous research has primarily been focused on the effects of constant temperature on populations, but changing temperature has received less attention.  Three constant temperature treatments (20, 25 and 30°C) and three pupal-alternating temperature treatments (20–25, 25–20 and 25–30°C) were set up to study the relationship between temperature and population development by age-stage, two-sex life table analysis in the oriental armyworm, Mythimna separata Walker, a notorious migratory pest in grain crops.  The 25°C treatment was considered optimal with 20 and 30°C as low suitable temperature and high temperatures, respectively.  The survival rate was relatively low before third instar larvae at  20°C (63.0%) and 20–25°C (70.1%), and extreme low after pupal stage at 30°C (20.6%).  Developmental duration of each stage was negatively correlated with temperature.  The adult pre-oviposition period, when most migratory insects initiate migration, was the shortest at 25°C (2.69 d) but was lengthened at both low suitable (7.48 d for 20°C, 6.91 d for 25–20°C and 4.57 d for 20–25°C) and high temperatures (3.74 d for 25–30°C and 5.00 d for 30°C).  Both low suitable and high temperature decreased lifetime fecundity, net reproductive rate and the intrinsic rate of increase, with variability observed across developmental duration and stage during non-optimal temperature.  The results expand knowledge of the relationship between changing temperature and armyworm population development, and adaptive strategies in complex ambient environment.
参考文献 | 相关文章 | 多维度评价
4. Accumulation characteristic of protein bodies in different regions of wheat endosperm under drought stress
CHEN Xin-yu, LI Bo, SHAO Shan-shan, WANG Lei-lei, ZHU Xiao-wei, YANG yang, WANG Wen-jun, YU Xu-run, XIONG Fei
Journal of Integrative Agriculture    2016, 15 (12): 2921-2930.   DOI: 10.1016/S2095-3119(16)61332-1
摘要1144)      PDF    收藏
    The structural characteristics of protein body accumulation in different endosperm regions of hard wheat cultivar (XM33) and soft wheat cultivar (NM13) under drought stress were investigated. Drought stress treatment was implemented from plant regreening to the caryopsis mature stage. Microscope images of endosperm cells were obtained using resin semi-thin slice technology to observe the distribution and relative area of protein body (PB). Compared with NM13, relative PB area of XM33 was significantly higher in sub-aleurone endosperm region. The amount of accumulation, including the size and relative area of PB, in two wheat cultivars was higher in sub-aleurone region than that in central region at 18 days post anthesis (DPA). Drought stress significantly enhanced the sizes and relative areas of PBs in the dorsal and abdominal endosperms in two wheat cultivars. Particularly for dorsal endosperm, drought stress enhanced the relative PB area at 18 DPA and NM13 (5.0% vs. 6.73%) showed less enhancement than XM33 (5.49% vs. 8.96%). However, NM13 (9.58% vs. 12.02%) showed greater enhancement than XM33 (10.25% vs. 11.7%) at 28 DPA. The protein content in the dorsal and abdominal endosperms of the two wheat cultivars decreased at 12 DPA and then increased until 38 DPA. Drought stress significantly increased the protein contents in the two main regions. From 12 to 38 DPA, the amount of PB accumulation and the protein content were higher in XM33 than those in NM13. The results revealed that PB distribution varied in different endosperm tissues and that the amount of PB accumulation was remarkably augmented by drought stress.
参考文献 | 相关文章 | 多维度评价
5. comparison of phytotoxicity of copper and nickel in soils with different chinese plant species
LI Bo, LIU Ji-fang, YANG Jun-xing, MA Yi-bing, cHEN Shi-bao
Journal of Integrative Agriculture    2015, 14 (6): 1192-1201.   DOI: 10.1016/S2095-3119(14)60906-0
摘要2166)      PDF    收藏
Ecological risk assessment of metals in soils is important to develop the critical loads of metals in soils. Phytotoxicity is one of the endpoints for ecological risk assessment of soils contaminated with metals. The sensitivity of eight Chinese plant species (bok choy, mustard, tomato, green chilli, paddy rice, barley, spinach and celery) to copper (Cu) and nickel (Ni) toxicity in two Chinese soils was investigated to assess their potential use for ecological risk assessment in the region. The results showed that bok choy and mustard were the two most sensitive species to Cu and Ni toxicities. Assessment of metal accumulation by the plants demonstrated that bok choy shoot had the highest bioconcentration factor (BCF, the ratio of metal concentration in plant shoots to metal concentration in soil). Given the importance of bok choy to agricultural production in Asia, it is therefore important that these sensitive plant species are included in species sensitivity distributions for ecological risk assessment of Cu and Ni in soils.
参考文献 | 相关文章 | 多维度评价
6. Isolation and Expression Analysis of Two Genes Encoding Cinnamate 4-Hydroxylase from Cotton (Gossypium hirsutum)
NI Zhi-yong, LI Bo, Neumann M Peter, Lü Meng , FAN Ling
Journal of Integrative Agriculture    2014, 13 (10): 2102-2112.   DOI: 10.1016/S2095-3119(13)60643-7
摘要1489)      PDF    收藏
Two genes (GhC4H1 and GhC4H2) that encode putative cotton cinnamate 4-hydroxylases that catalyze the second step in the phenylpropanoid pathway were isolated from developing cotton fibers. GhC4H1 and GhC4H2 each contain open reading frames of 1 518 base pairs (bp) in length and both encode proteins consisting of 505 amino acid residues. They are 90.89% identical to each other at the amino acid sequence level and belong to class I of plant C4Hs. GhC4H1 and GhC4H2 genomic DNA are 2 247 and 2 161 bp long, respectively, and contain two introns located at conserved positions relative to the coding sequence. GhC4H1 and GhC4H2 promoters were isolated and found to contain many cis-elements (boxes P, L and AC-I element) previously identified in the promoters of other phenylpropanoid pathway genes. Histochemical staining showed GUS expression driven by the GhC4H1 and GhC4H2 promoters in ovules and fibers tissues. GhC4H1 and GhC4H2 were also widely expressed in other cotton tissues. GhC4H2 expression reached its highest level during the elongation stage of fiber development, whereas GhC4H1 expression increased during the secondary wall development period in cotton fibers. Our results contribute to a better understanding of the biochemical role of GhC4H1 and GhC4H2 in cotton fiber development.
参考文献 | 相关文章 | 多维度评价
7. Genome-Wide Transcriptional Analysis of Yield and Heterosis-Associated Genes in Maize (Zea mays L.)
ZHANG Ti-fu, LI Bo, ZHANG Deng-feng, JIA Guan-qing, LI Zhi-yong, WANG Shou-cai
Journal of Integrative Agriculture    2012, 12 (8): 1245-1256.   DOI: 10.1016/S1671-2927(00)8653
摘要1376)      PDF    收藏
Heterosis has contributed greatly to yield in maize, but the nature of its contribution is not completely clear. In this study, two strategies using whole-genome oligonucleotide microarrays were employed to identify differentially expressed genes (DEGs) associated with heterosis and yield. The analysis revealed 1 838 heterosis-associated genes (HAGs), 265 yieldassociated genes (YAGs), and 85 yield heterosis-associated genes (YHAGs). 37.1% of HAGs and 22.4% of YHAGs expressed additively. The remaining genes expressed non-additively, including those with high/low-parent dominance and over/under dominance, which were prevalent in this research. Pathway enrichment analysis and quantitative trait locus (QTL) co-mapping demonstrated that the metabolic pathways for energy and carbohydrates were the two main enriched pathways influencing heterosis and yield. Therefore, the DEGs participating in energy and carbohydrate metabolism were considered to contribute to heterosis and yield significantly. The investigation of potential groups of HAGs, YAGs, and YHAGs might provide valuable information for exploiting heterosis to improve yield in maize breeding. In addition, our results support the view that heterosis is contributed by multiple, complex molecular mechanisms.
参考文献 | 相关文章 | 多维度评价