期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 水稻根系和根际环境对综合栽培措施的响应
Hanzhu Gu, Xian Wang, Minhao Zhang, Wenjiang Jing, Hao Wu, Zhilin Xiao, Weiyang Zhang, Junfei Gu, Lijun Liu, Zhiqin Wang, Jianhua Zhang, Jianchang Yang, Hao Zhang
Journal of Integrative Agriculture    2024, 23 (6): 1879-1896.   DOI: 10.1016/j.jia.2023.06.031
摘要139)      PDF    收藏

综合栽培措施(ICPs)对提高谷物产量和资源利用效率至关重要。然而,ICPs对水稻根际环境和根系的影响尚不清楚。本研究对4个水稻品种开展了大田试验。设置了6种栽培措施处理,包括零氮处理(0 N)、当地常规(LFP)、减氮(NR)和3种渐进式综合栽培措施,包括增密减氮(ICP1),ICP1的基础上用干湿交替灌溉替代常规灌溉(ICP2),以及在ICP2的基础上施用有机肥(ICP3)。ICPs可获得较高的产量和氮素利用效率。根长、干物重、根直径、根系氧化力、根系伤流量、玉米素和玉米素核苷含量以及根系分泌物中总有机酸含量随着ICPs的引入而提高。ICPs提高了根际和非根际土壤硝态氮、脲酶和转化酶活性以及微生物(细菌)多样性,降低了铵态氮含量。与非根际土壤相比,各处理下的根际土壤养分含量(铵态氮、全氮、全钾、全磷、硝酸盐和速效磷)和脲酶活性均降低,但转化酶活性和细菌多样性则相反。各主要生育期的根系形态生理特征和根际土壤铵态氮含量与产量和氮素利用效率密切相关。这些结果表明,在综合栽培措施下,水稻的高产可能得益于根系和根际环境的同步改善。

参考文献 | 相关文章 | 多维度评价
2. 番茄GDSL酯酶/脂肪酶基因的全基因组鉴定和表达分析
SUN Yao-guang, HE Yu-qing, WANG He-xuan, JIANG Jing-bin, YANG Huan-huan, XU Xiang-yang
Journal of Integrative Agriculture    2022, 21 (2): 389-406.   DOI: 10.1016/S2095-3119(20)63461-X
摘要480)      PDF    收藏

GDSL酯酶/脂肪酶家族包含许多功能基因,它们在植物的生长发育、形态建成、种子油脂合成和防御反应中发挥重要的生物学功能。GDSL酯酶/脂肪酶基因可响应生物和非生物胁迫。虽然GDSL酯酶/脂肪酶家族基因在其他植物中已被鉴定和研究,但它们在番茄中的分类和功能尚不清楚。本研究首次在番茄中鉴定了80GDSL酯酶/脂肪酶家族基因成员,命名为SlGELP1-80我们对这些基因在染色体上的位置进行了定位,并对它们的理化性质、基因结构、系统发育关系、共线关系和顺式作用元件进行了分析。SlGELP基因在番茄中的时空表达特征具有多样性。此外,结合RNA-seq分析表明,番茄接种Stemphylium lycopersici前后SlGELP基因的表达模式不同。用qRT-PCR方法验证番茄接种S. lycopersici病原菌以及分别喷施SAJA处理后5显著差异SlGELP基因的表达。本研究首次利用生物信息学方法鉴定和分析了番茄GDSL酯酶/脂肪酶家族基因,为提高植物抗病性研究提供了新的思路。

参考文献 | 相关文章 | 多维度评价
3. Silencing the SLB3 transcription factor gene decreases drought stress tolerance in tomato
WANG Zi-yu, bAO Yu-fang, PEI Tong, WU Tai-ru, DU Xu, HE Meng-xi, WANG Yue, LIU Qi-feng, YANG Huan-huan, JIANG Jing-bin, ZHANG He, LI Jing-fu, ZHAO Ting-ting, XU Xiang-yang
Journal of Integrative Agriculture    2020, 19 (11): 2699-2708.   DOI: 10.1016/S2095-3119(20)63350-0
摘要128)      PDF    收藏
BRI1-EMS-SUPPRESSOR 1 (BES1) transcription factor is closely associated with the brassinosteroid (BR) signaling pathway and plays an important role in plant growth and development.  SLB3 is a member of BES1 transcription factor family and its expression was previously shown to increase significantly in tomato seedlings under drought stress.  In the present study,we used virus-induced gene silencing (VIGS) technology to downregulate SLB3 expression to reveal the function of the SLB3 gene under drought stress further.  The downregulated expression of SLB3 weakened the drought tolerance of the plants appeared earlier wilting and higher accumulation of H2O2 and O2·, decreased superoxide dismutase (SOD) activity, and increased proline (PRO) and malondialdehyde (MDA) contents and peroxidase (POD) activity.  Quantitative real-time PCR (qRT-PCR) analysis of BR-related genes revealed that the expression of SlCPD, SlDWARF and BIN2-related genes was significantly upregulated in SLB3-silenced seedlings under drought stress, but that the expression of TCH4-related genes was downregulated.  These results showed that silencing the SLB3 gene reduced the drought resistance of tomato plants and had an impact on the BR signaling transduction which may be probably responsible for the variation in drought resistance of the tomato plants. 
参考文献 | 相关文章 | 多维度评价
4. Downregulation of SL-ZH13 transcription factor gene expression decreases drought tolerance of tomato
ZHAO Ting-ting, WANG Zi-yu, BAO Yu-fang, ZHANG Xiao-chun, YANG Huan-huan, ZHANG Dong-ye, JIANG Jing-bin, ZHANG He, LI Jing-fu, CHEN Qing-shan, XU Xiang-yang
Journal of Integrative Agriculture    2019, 18 (7): 1579-1586.   DOI: 10.1016/S2095-3119(19)62621-3
摘要293)      PDF    收藏
Zinc finger-homeodomain proteins (ZF-HDs) are transcription factors that regulate plant growth, development, and abiotic stress tolerance.  The SL-ZH13 gene was found to be significantly upregulated under drought stress treatment in tomato (Solanum lycopersicum) leaves in our previous study.  In this study, to further understand the role that the SL-ZH13 gene plays in the response of tomato plants to drought stress, the virus-induced gene silencing (VIGS) method was applied to downregulate SL-ZH13 expression in tomato plants, and these plants were treated with drought stress to analyze the changes in drought tolerance.  The SL-ZH13 silencing efficiency was confirmed by quantitative real-time PCR (qRT-PCR) analysis.  In SL-ZH13-silenced plants, the stems wilted faster, leaf shrinkage was more severe than in control plants under the same drought stress treatment conditions, anyd the mean stem bending angle of SL-ZH13-silenced plants was smaller than that of control plants.  Physiological analyses showed that the activity of superoxide dismutase (SOD) and peroxidase (POD) and the content of proline (Pro) in SL-ZH13-silenced plants were lower than those in control plants after 1.5 and 3 h of drought stress treatment.  The malondialdehyde (MDA) content in SL-ZH13-silenced plants was higher than that in control plants after 1.5 and 3 h of drought stress treatment, and H2O2 and O2-· accumulated much more in the leaves of SL-ZH13-silenced plants than in the leaves of control plants.  These results suggested that silencing the SL-ZH13 gene affected the response of tomato plants to drought stress and decreased the drought tolerance of tomato plants. 
参考文献 | 相关文章 | 多维度评价
5. Rapid gene expression change in a novel synthesized allopolyploid population of cultivated peanut×Arachis doigoi cross by cDNA-SCoT and HFO-TAG technique
HE Liang-qiong1, TANG Rong-hua1, JIANG Jing1, XIONG Fa-qian1, HUANG Zhi-peng1, WU Hai-ning1, GAO Zhong-kui1, ZHONG Rui-chun1, HE Xin-hua2, HAN Zhu-qiang1
Journal of Integrative Agriculture    2017, 16 (05): 1093-1102.   DOI: 10.1016/S2095-3119(16)61462-4
摘要964)      PDF    收藏
Allopolyploidy has played an important role in plant evolution and heterosis.  Recent studies indicate that the process of wide hybridization and (or) polyploidization may induce rapid and extensive genetic and epigenetic changes in some plant species.  To better understand the allopolyploidy evolutionism and the genetic mechanism of Arachis interspecific hybridization, this study was conducted to monitor the gene expression variation by cDNA start codon targeted polymorphism (cDNA-SCoT) and cDNA high-frequency oligonucleotide-targeting active gene (cDNA-HFO-TAG) techniques, from the hybrids (F1) and newly synthesized allopolyploid generations (S0-S3) between tetraploid cultivated peanut Zhongkaihua 4 with diploid wild one Arachis doigoi. Rapid and considerable gene expression variations began as early as in the F1 hybrid or immediately after chromosome doubling.  Three types of gene expression changes were observed, including complete silence (gene from progenitors was not expressed in all progenies), incomplete silence (gene expressed only in some progenies) and new genes activation.  Those silent genes mainly involved in RNA transcription, metabolism, disease resistance, signal transduction and unknown functions.  The activated genes with known function were almost retroelements by cDNA-SCoT technique and all metabolisms by cDNA-HFO-TAG.  These findings indicated that interspecific hybridization and ploidy change affected gene expression via genetic and epigenetic alterations immediately upon allopolyploid formation, and some obtained transcripts derived fragments (TDFs) probably could be used in the research of molecular mechanism of Arachis allopolyploidization which contribute to thwe genetic diploidization of newly formed allopolyploids.  Our research is valuable for understanding of peanut evolution and improving the utilization of putative and beneficial genes from the wild peanut.
参考文献 | 相关文章 | 多维度评价
6. Crop Diversification in Coping with Extreme Weather Events in China
HUANG Ji-kun; JIANG Jing;WANG Jin-xia ; HOU Ling-ling
Journal of Integrative Agriculture    2014, 13 (4): 677-686.   DOI: 10.1016/S2095-3119(13)60700-5
摘要1960)      PDF    收藏
Apart from the long-term effects of climate change, the frequency and severity of extreme weather events have been increasing. Given the risks posed by climate change, particularly the changes in extreme weather events, the question of how to adapt to these changes and mitigate their negative impacts has received great attention from policy makers. The overall goals of this study are to examine whether farmers adapt to extreme weather events through crop diversification and which factors influence farmers’ decisions on crop diversification against extreme weather events in China. To limit the scope of this study, we focus on drought and flood events only. Based on a unique large-scale household survey in nine provinces, this study finds that farmers respond to extreme weather events by increasing crop diversification. Their decision to diversify crops is significantly influenced by their experiences of extreme weather events in the previous year. Such results are understandable because farmers’ behaviors are normally based on their expectations. Moreover, household characteristics also affect farmers’ decisions on crop diversification strategy, and their effects differ by farmers’ age and gender. This paper concludes with several policy implications.
参考文献 | 相关文章 | 多维度评价
7. Functional prediction of tomato PLATZ family members and functional verification of SlPLATZ17
XU Min, GAO Zhao, LI Da-long, ZHANG Chen, ZHANG Yu-qi, HE Qian, QI Ying-bin, ZHANG He, JIANG Jing-bin, XU Xiang-yang, ZHAO Ting-ting
Journal of Integrative Agriculture    DOI: doi.org/10.1016/j.jia.2023.08.003
录用日期: 2023-08-03

8. 控释氮肥优化施用策略可提高水稻产量、氮肥利用效率和抗倒伏能力
Hao Wu, Wenjiang Jing, Yajun Zhang, Ying Zhang, Weilu Wang, Kuanyu Zhu, Weiyang Zhang, Junfei Gu, Lijun Liu, Jianhua Zhang, Hao Zhang
Journal of Integrative Agriculture    DOI: 10.1016/j.jia.2024.10.007
录用日期: 2024-10-28