期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Molecular detection of the powdery mildew resistance genes in winter wheats DH51302 and Shimai 26
QU Yun-feng, WU Pei-pei, HU Jing-huang, CHEN Yong-xing, SHI Zhan-liang, QIU Dan, LI Ya-hui, ZHANG Hong-jun, ZHOU Yang, YANG Li, LIU Hong-wei, ZHU Tong-quan, LIU Zhi-yong, ZHANG Yan-ming, LI Hong-jie
Journal of Integrative Agriculture    2020, 19 (4): 931-940.   DOI: 10.1016/S2095-3119(19)62644-4
摘要122)      PDF    收藏
Resistance to powdery mildew is an important trait of interest in many wheat breeding programs.  The information on genes conferring resistance to powdery mildew in wheat cultivars is useful in parental selection.  Winter wheat breeding line DH51302 derived from Liangxing 99 and cultivar Shimai 26 derived from Jimai 22 showed identical infection patterns against 13 isolates of Blumeria graminis f. sp. tritici (Bgt) that causes wheat powdery mildew.  DH51302 and Shimai 26 were crossed to a powdery mildew susceptible cultivar Zhongzuo 9504 and the F2:3 families were used in molecular localization of the resistance genes.  Fourteen polymorphic markers, which were linked to Pm52 from Liangxing 99, were used to establish the genetic linkage maps for the resistance genes PmDH51302 and PmSM26 in DH51302 and Shimai 26, respectively.  These genes were placed in the same genetic interval where Pm52 resides.  Analysis of gene-linked molecular markers indicated that PmDH51302 and PmSM26 differed from other powdery mildew resistance genes on chromosome arm 2BL, such as Pm6, Pm33, Pm51, MlZec1, MlAB10, and Pm64.  Based on the results of reaction patterns to different Bgt isolates and molecular marker localization, together with the pedigree information, DH51302 and Shimai 26 carried the same gene, Pm52, which confers their resistance to powdery mildew.
 
参考文献 | 相关文章 | 多维度评价
2. Fine mapping of powdery mildew resistance gene PmTm4 in wheat using comparative genomics
XIE Jing-zhong, WANG Li-li, WANG Yong, ZHANG Huai-zhi, ZHOU Sheng-hui, WU Qiu-hong, CHEN Yong-xing, WANG Zhen-zhong, WANG Guo-xin, ZHANG De-yun, ZHANG Yan, HU Tie-zhu, LIU Zhi-yong
Journal of Integrative Agriculture    2017, 16 (03): 540-550.   DOI: 10.1016/S2095-3119(16)61377-1
摘要1388)      PDF    收藏
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most severe wheat diseases.  Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to control this disease.  Genetic analysis revealed that a single dominant resistance gene named PmTm4 originated from Chinese wheat line Tangmai 4 confers resistance to prevailing isolates of B. graminis f. sp. tritici isolate E09.  Detailed comparative genomics analyses helped to develop closely linked markers to PmTm4 and a fine genetic map was constructed using large F2 population, in which PmTm4 was located into a 0.66-cM genetic interval.  The orthologous subgenome region of PmTm4 in Aegilops tauschii was identified, and two resistance gene analogs (RGA) were characterized from the corresponding sequence scaffolds of Ae. tauschii draft assembly.  The closely linked markers and identified Ae. tauschii orthologs in the mapping interval provide an entry point for chromosome landing and map-based cloning of PmTm4.
参考文献 | 相关文章 | 多维度评价
3. QTL mapping revealed TaVp-1A conferred pre-harvest sprouting resistance in wheat population Yanda 1817×Beinong 6
ZHOU Sheng-hui, FU Lin, WU Qiu-hong, CHEN Jiao-jiao, CHEN Yong-xing, XIE Jing-zhong, WANG Zhen-zhong, WANG Guo-xin, ZHANG De-yun, LIANG Yong, ZHANG Yan, OU Ming-shan, LIANG Rong-qi, HAN Jun, LIU Zhi-yong
Journal of Integrative Agriculture    2017, 16 (02): 435-444.   DOI: 10.1016/S2095-3119(16)61361-8
摘要1241)      PDF    收藏
Pre-harvest sprouting (PHS) occurs frequently in most of the wheat cultivation area worldwide, which severely reduces yield and end-use quality, resulting in substantial economic loss.  In this study, quantitative trait loci (QTL) for PHS resistance were mapped using an available high-density single nucleotide polymorphism (SNP) and simple sequence repeat (SSR) genetic linkage map developed from a 269 recombinant inbred lines (RILs) population of Yanda 1817×Beinong 6.  Using phenotypic data on two locations (Beijing and Shijiazhuang, China) in two years (2012 and 2013 harvesting seasons), five QTLs, designated as QPhs.cau-3A.1, QPhs.cau-3A.2, QPhs.cau-5B, QPhs.cau-4A, and QPhs.cau-6A, for PHS (GP) were detected by inclusive composite interval mapping (ICIM) (LOD≥2.5).  Two major QTLs, QPhs.cau-3A.2 and QPhs.cau-5B, were mapped on 3AL and 5BS chromosome arms, explaining 6.29–21.65% and 4.36–5.94% of the phenotypic variance, respectively.  Precise mapping and comparative genomic analysis revealed that the TaVp-1A flanking region on 3AL is responsible for QPhs.cau-3A.2.  SNP markers flanking QPhs.cau-3A.2 genomic region were developed and could be used for introgression of PHS tolerance into high yielding wheat varieties through marker-assisted selection (MAS).
参考文献 | 相关文章 | 多维度评价
4. Comparative genetic mapping revealed powdery mildew resistance gene MlWE4 derived from wild emmer is located in same genomic region of Pm36 and Ml3D232 on chromosome 5BL
ZHANG Dong, OUYANG Shu-hong, WANG Li-li, CUI Yu, WU Qiu-hong, LIANG Yong, WANG Zhen-zhong, XIE Jing-zhong, ZHANG De-yun, WANG Yong, CHEN Yong-xing, LIU Zhi-yong
Journal of Integrative Agriculture    2015, 14 (4): 603-609.   DOI: 10.1016/S2095-3119(14)60774-7
摘要1674)      PDF    收藏
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most devastating wheat diseases. Wild emmer wheat (Triticum turgidum ssp. dicoccoides) is a promising source of disease resistance for wheat. A powdery mildew resistance gene conferring resistance to B. graminis f. sp. tritici isolate E09, originating from wild emmer wheat, has been transferred into the hexaploid wheat line WE4 through crossing and backcrossing. Genetic analyses indicated that the powdery mildew resistance was controlled by a single dominant gene, temporarily designated MlWE4. By mean of comparative genomics and bulked segregant analysis, a genetic linkage map of MlWE4 was constructed, and MlWE4 was mapped on the distal region of chromosome arm 5BL. Comparative genetic linkage maps showed that genes MlWE4, Pm36 and Ml3D232 were co-segregated with markers XBD37670 and XBD37680, indicating they are likely the same gene or alleles in the same locus. The co-segregated markers provide a starting point for chromosome landing and map-based cloning of MlWE4, Pm36 and Ml3D232.
参考文献 | 相关文章 | 多维度评价