期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Population genetic structure of Chinese Puccinia triticina races based on multi-locus sequences
LIU Tai-guo, GE Run-jing, MA Yu-tong, LIU Bo, GAO Li, CHEN Wan-quan
Journal of Integrative Agriculture    2018, 17 (08): 1779-1789.   DOI: 10.1016/S2095-3119(18)61923-9
摘要313)      PDF    收藏
Received  10 October, 2017    Accepted  9 February, 2018


参考文献 | 相关文章 | 多维度评价
2. Postulation of seedling leaf rust resistance genes in 84 Chinese winter wheat cultivars
REN Xiao-li, LIU Tai-guo, LIU Bo, GAO Li, CHEN Wan-quan
Journal of Integrative Agriculture    2015, 14 (10): 1992-2001.   DOI: 10.1016/S2095-3119(14)61002-9
摘要1707)      PDF    收藏
Wheat leaf rust (caused by Puccinia triticina) is one of the most important fungal diseases in China. There are tens of winter wheat cultivars which are approved to be released by the government at a national level and more than 100 wheat cultivars at the provincial level. But there is no information about leaf rust (Lr) genes in these cultivars, which makes it difficult for farmers and breeders to select which cultivars they should plant in their fields and use in their breeding programs. The objective of this paper was to identify the leaf rust resistant genes at seedling stage present in the 84 commercial wheat cultivars from China that have been released in the past few years. A set of 20 near isogenic lines with Thatcher background and 6 lines with known Lr genes were used to test the virulence of 12 races of P. triticina (Pt). By comparing the infection types (ITs) produced on the 84 cultivars by the 12 Pt races with the ITs on the differential sets, the Lr genes were postulated. In addition, 8 molecular markers of Lr genes such as Lr9, Lr10, Lr19, Lr20, Lr21, Lr24, Lr26 and Lr29, which are closely linked to or co-segregated with the Lr gene, were used for further validation of the genes in the 84 Chinese winter wheat cultivars. Twelve Lr genes, including Lr1, Lr3, (Lr3bg), (Lr3ka), Lr11, Lr13, Lr14a, Lr16, Lr26, Lr27, Lr30 and Lr31 were postulated to be present either singly or in combinations in these Chinese wheat cultivars. Lr3 and Lr26 were detected most often in the tested cultivars, with frequencies of 51.2 and 38.1%, respectively. No wheat Lr genes were detected in 16 cultivars, and 4 cultivars may carry unknown Lr genes other than those used in this study. Lr9, Lr20, Lr21, Lr24, Lr25 and Lr29 were not present in any of the 84 tested accessions.
参考文献 | 相关文章 | 多维度评价
3. Editorial —— The Hot Spots in Cereal Rusts and Powdery Mildew Research
CHEN Wan-quan, DUAN Xia-yu
Journal of Integrative Agriculture    2014, 13 (2): 229-232.   DOI: 10.1016/S2095-3119(13)60688-7
摘要1457)      PDF    收藏
参考文献 | 相关文章 | 多维度评价
4. A FIASCO-Based Approach for Detection and Diagnosis of Puccinia graminis f. sp. tritici in China
LIU Tai-guo, WANG Xi, GAO Li, LIU Bo, CHEN Wan-quan , XIANG Wen-sheng
Journal of Integrative Agriculture    2014, 13 (11): 2438-2444.   DOI: 10.1016/S2095-3119(14)60895-9
摘要1573)      PDF    收藏
Stem or black rust of wheat, caused by the fungus Puccinia graminis Pers. f. sp. tritici Eriks. & E. Henn. (Pgt), has historically caused severe losses to wheat (Triticum aestivum L.) production worldwide. In the Fujian and Guangdong provinces of China, six moderate-to-severe epidemics of wheat stem rust have occurred, which caused destructive losses of wheat between 1949 and 1966, although these were brought under control by integrated management. A rapid and reliable detection of the pathogen will contribute to the accurate forecast and seasonal control of this disease. The objective of this study was to develop a diagnostic molecular marker generated from simple sequence repeats (SSR) for the early rapid identification of P. graminis. The genomic DNA of P. graminis, Puccinia striiformis, Puccinia triticina and seven other species was amplified by a pair of SSR primers generated by the FIASCO (fast isolation by AFLP sequences containing repeats) enrichment protocol. The primer set Pgtw (f)/ Pgtw (r) generated a polymorphic pattern displaying a 330-bp DNA fragment specific for P. graminis whereas no DNA fragment was obtained from other non-target wheat fungal pathogens. The detection limit of the primer was 1 ng DNA in a 25-mL PCR reaction. The SSR markers of P. graminis can also be used to detect the presence of latent hyphae in Pgt-infected wheat leaves as early as 30 h post-inoculation. A rapid approach to distinguish P. graminis from similar pathogenic fungi would be anticipated in further study.
参考文献 | 相关文章 | 多维度评价
5. Jellyfish Green Fluorescent Protein (GFP) as a Reporter for Fusarium gramminearum Development on Wheat
QI Jun-xian, LIU Tai-guo, XU Ying, CHEN Huai-gu, GAO Li, LIU Bo , CHEN Wan-quan
Journal of Integrative Agriculture    2014, 13 (10): 2177-2183.   DOI: 10.1016/S2095-3119(14)60875-3
摘要1128)      PDF    收藏
The plasmid pGPDGFP under the control of pgpdA promotor was used together with vector pAN7-1 containing the hygromycin resistance cassette to co-transform protoplasts of HG1, Fusarium graminearum from Hubei Province, China. Twelve out of 14 hygromycin-resistant transformants showed green signal under the UV light and contained one or several copies of gfp, as indicated by Southern analysis of genomic DNA digested with different restriction enzymes and hybridized to the gfp probe. A single gfp copy transformant (HG1C5) was selected for further evaluation of 80 Chinese wheat cultivars or advanced lines. The results showed different resistance type to F. graminearum were observed. GFP signals observed in the rachis and adjacent spikes of 70 Chinese wheat lines such as Chuanchongzu 104 indicated both type I (host resistance to the initial infection by the fungus) and type II (resistance to the spread of FHB symptoms within an infected spike) were not observed. While other 10 lines showed type II resistance to F. graminearum with GFP signals only in inoculated spikelets. Development of the mycelium can be intuitively observed and the resistance of wheat to F. graminearum can be identified at 7 days post inoculation (dpi) in this way. The results showed no differences were evaluated between the transformed HG1C5 and the non-transgene artificial inoculation by SAS paired chi-square test and McNemar’s test (P=0.0625).
参考文献 | 相关文章 | 多维度评价
6. Postulation of Seedlings Resistance Genes to Yellow Rust in Commercial Wheat Cultivars from Yunnan Province in China 
LI Ming-ju, FENG Jing, CAO Shi-qin, LIN Rui-ming, CHENG Geng, YU Ya-xiong, CHEN Wan-quan , XU Shi-chang
Journal of Integrative Agriculture    2011, 10 (11): 1723-1731.   DOI: 10.1016/S1671-2927(11)60171-5
摘要2156)      PDF    收藏
The objective of this study was to characterize yellow (stripe) rust resistance gene(s) in 52 commercial wheat cultivars from Yunnan Province in China, and to provide information for their rational deployment in field. Seedlings of wheat cultivars were inoculated with 25 differential isolates of Puccinia striiformis from foreign and home to postulate resistance genes to yellow rust, and then validated by pedigree. There were 10 probable resistance genes characterized in these cultivars, in which, Yr9 was most commonly postulated to be present in thirteen cultivars. Yr21, the second, was present in four cultivars. Yr8, the third, were present in three cultivars. Yr6, Yr17 and Yr26, the fourth, was present in two cultivars respectively. The other gene(s) such as, Yr2+YrA, Yr7 and Yr27, were only present in single cultivar(s); unknown gene(s) or gene(s) combination(s) were present in 22 cultivars. One cultivar (Yunmai 42) had no resistance gene tested in this study. Cultivars such as Yunmai 52, Mian 1971-98, Kunmai 4, and Yunmai 56 carried effective genes and can be popularized mainly; Yr9 should be planted with other Yr genes. In the meantime other effective genes should be introduced to realize gene diversity for controlling wheat yellow rust. Yunmai 42 should be reduced to avoid rust breakout. Unknown gene cultivars should be utilized and be researched deeply.
参考文献 | 相关文章 | 多维度评价