[1]Boyd C, Hughes T, Pypaert M, Novick P. 2004. Vesicles carry most exocyst subunits to exocytic sites marked by the remaining two subunits, Sec3p and Exo70p. The Journal of Cell Biology, 167, 889-901[2]Cao S C, Hou X L, Hao X M. 2002. Studies on breeding and seed reproduction technique of Aijiaohuang self- incompatible line in non-heading Chinese cabbage. Journal of Nanjing Agricultural University, 25, 111-113 (in Chinese)[3]Chong Y T, Gidda S K, Sanford C, Parkinson J, Mullen R T, Goring D R. 2010. Characterization of the Arabidopsis thaliana exocyst complex gene families by phylogenetic, expression profiling, and subcellular localization studies. New Phytologist, 185, 401-419[4]Elias M, Drdova E, Ziak D, Bavlnka B, Hala M, Cvrckova F, Soukupova H, Zarsky V. 2003. The exocyst complex in plants. Cell Biology International, 27, 199-201[5]Finger F P, Hughes T E, Novick P. 1998. Sec3p is a spatial landmark for polarised secretion in budding yeast. Cell, 92, 559-571[6]Guo W, Roth D, Walch-Solimena C, Novick P. 1999. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. The EMBO Journal, 4, 71-80[7]Hála M, Cole R, Synek L, Drdová E, Pecenková T, Nordheim A, Lamkemeyer T, Madlung J, Hochholdinger F, Fowler J E, et al. 2008. An exocyst complex functions in plant cell growth in Arabidopsis and tobacco. The Plant Cell, 20, 1330-1345[8]He B, Guo W. 2009. The exocyst complex in polarized exocytosis. Current Opinion in Cell Biology, 21, 537-542[9]Hsu S C, Ting A E, Hazuka C D, Davanger S, Kenny J W, Kee Y, Scheller R H. 1996. The mammalian brain rsec6/8 complex. Neuron, 17, 1209-1219[10]Hsu S C, TerBush D, Abraham M, Guo W. 2004. The exocyst complex in polarised exocytosis. International Review of Cytology, 233, 243-265[11]Ivanov R, Fobis-Loisy I, Gaude T. 2010. When no means no: guide to Brassicaceae self-incompatibility. Trends in Plant Science, 15, 387-394[12]Iwano M, Shiba H, Matoba K, Miwa T, Funato M, Entani T, Nakayama P, Shimosato H, Takaoka A, Isogai A, et al. 2007. Actin dynamics in papilla cells of Brassica rapa during self- and cross-pollination. Plant Physiology, 144, 72-81[13]Kee Y, Yoo J S, Hazuka C D, Peterson K E, Hsu S C, Scheller R H. 1997. Subunit structure of the mammalian exocyst complex. Proceedings of the National Academy of Sciences of the United States of America, 94, 14438- 14443.[14]Li S, van Os G M, Ren S, Yu D, Ketelaar T, Emons A M, Liu C M. 2010. Expression and functional analyses of EXO70 genes in Arabidopsis implicate their roles in regulating cell type-specific exocytosis. Plant Physiology, 154, 1819-1830[15]Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods, 25, 402-408[16]Munson M, Novick P. 2006. The exocyst defrocked, a framework of rods revealed. Nature Structural & Molecular Biology, 13, 577-581[17]Samuel M A, Chong Y T, Haasen K E, Aldea-Brydges M G, Stone S L, Goring D R. 2009. Cellular pathways regulating responses to compatible and self-incompatible pollen in Brassica and Arabidopsis stigmas intersect at Exo70A1, a putative component of the exocyst complex. The Plant Cell, 21, 2655-2671[18]Samuel M A, Tang W, Jamshed M, Northey J, Patel D, Smith D, Siu K W, Muench D G, Wang Z Y, Goring D R. 2011. Proteomic analysis of Brassica stigmatic proteins following the self-incompatibility reaction reveals a role for microtubule dynamics during pollen responses. Molecular & Cellular Proteomics, 10. doi: 10.1074/mcp. M111.011338 [19]Sheen J, Hwang S, Niwa Y, Kobayashi H, Galbraith D W. 1995. Green fluorescent protein as a new vital marker in plant cells. Plant Journal, 8, 777-784[20]Synek L, Schlager N, Elia´s M, Quentin M, Hauser M T, Za´rsky´ V. 2006. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant Journal, 48, 54-72[21]Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599[22]TerBush D R, Maurice T, Roth D, Novick P. 1996. The exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. The EMBO Journal, 15, 6483-6494[23]TerBush D R, Novick P. 1995. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. The Journal of Cell Biology, 130, 299-312[24]Tsuboi T, Ravier M A, Xie H, Ewart M A, Gould G W, Baldwin S A, Rutter G A. 2005. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. The Journal of Biological Chemistry, 280, 25565-25570[25]Xiao D, Zhang N W, Zhao J J, Bonnema G, Hou X L. 2012. Validation of reference genes for real-time quantitative PCR normalisation in non-heading Chinese cabbage. Functional Plant Biology, 39, 342-350[26]Wang L, Hou X L, Zhang A F, Li Y. 2012. Effect of NaCl on overcoming self-incompatibility in non-heading Chinese cabbage (Brassica campestris ssp. chinensis Makino) studied by fluorescent microscopy. Acta Horticulturae, 932, 127-132[27]Yang K, Zhou Y X, Zhang H C, Zhao Y B, Yang Y J, Lu J X, Zhu L Q, Xue L Y, Lv J, Gao Q G. 2012. Cloning and expression characteristics of EX070A1 from Brassica oleracea, Brassica campestris, and Brassica napus. Acta Agronomica Sinica, 38, 578-588 (in Chinese) |