[1]Cuccurullo M, Schlosser G, Cacace G, Malorni L, Pocsfalvi G. 2007. Identification of phosphoproteins and determination of phosphorylation sites by zirconium dioxide enrichment and SELDI-MS/MS. Journal of Mass Spectrometry, 42, 1069-1078. [2]Farrell H M Jr, Jimenez-Flores R, Bleck G T, Brown E M, Butler J E, Creamer L K, Hicks C L, Hollar C M, Ng-Kwai-Hang K F, Swaisgood H E. 2004. Nomenclature of the proteins of cows’ milk-sixth revision. Journal of Dairy Science, 87, 1641-1674. [3]Ficarro S B, McCleland M L, Stukenberg P T, Burke D J, Ross M M, Shabanowitz J, Hunt D F, White F M. 2002. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nature Biotechnology, 20, 301-305. [4]Ginger M R, Grigor M R. 1999. Comparative aspects of milk caseins. Comparative Biochemistry and Physiology (B: Biochemistry and Molecular Biology), 124, 133-145. [5]Girardet J M, Miclo L, Florent S, Molle D, Gaillard J L. 2006. Determination of the phosphorylation level and deamidation susceptibility of equine beta-casein. Proteomics, 6, 3707-3717. [6]Holland J W, Deeth H C, Alewood P F. 2004. Proteomic analysis of kappa-casein micro-heterogeneity. Proteomics, 4, 743-752. [7]Holland J W, Deeth H C, Alewood P F. 2006. Resolution and characterisation of multiple isoforms of bovine kappa-casein by 2-DE following a reversible cysteinetagging enrichment strategy. Proteomics, 6, 3087-3095. [8]Jensen S S, Larsen M R. 2007. Evaluation of the impact of some experimental procedures on different phosphopeptide enrichment techniques. Rapid Communications in Mass Spectrometry, 21, 3635-3645. [9]Kweon H K, Hakansson K. 2006. Selective zirconium dioxide-based enrichment of phosphorylated peptides for mass spectrometric analysis. Analytical Chemistry, 78, 1743-1749. [10]Laemmli U K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680-685. [11]Larsen M R, Thingholm T E, Jensen O N, Roepstorff P, Jorgensen T J. 2005. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Molecular & Cellular Proteomics, 4, 873-886. [12]Mamone G, Caira S, Garro G, Nicolai A, Ferranti P, Picariello G, Malorni A, Chianese L, Addeo F. 2003. Casein phosphoproteome: identification of phosphoproteins by combined mass spectrometry and two-dimensional gel electrophoresis. Electrophoresis, 24, 2824-2837. [13]Mateos A, Miclo L, Molle D, Dary A, Girardet J M, Gaillard J L. 2009. Equine alpha S1-casein: characterization of alternative splicing isoforms and determination of phosphorylation levels. Journal of Dairy Science, 92, 3604-3615. [14]McMahon D J, Oommen B S. 2008. Supramolecular structure of the casein micelle. Journal of Dairy Science, 91, 1709-1721. [15]Neuhoff V, Arold N, Taube D, Ehrhardt W. 1988. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie brilliant blue G-250 and R-250. Electrophoresis, 9, 255-262. [16]Neveu C, Molle D, Moreno J, Martin P, Leonil J. 2002. Heterogeneity of caprine beta-casein elucidated by RPHPLC/ MS: genetic variants and phosphorylations. Journal of Protein Chemistry, 21, 557-567. [17]Pinkse M W, Uitto P M, Hilhorst M J, Ooms B, Heck A J. 2004. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2DnanoLC-ESI-MS/MS and titanium oxide precolumns. Analytical Chemistry, 76, 3935-3943. [18]Poth A G, Deeth H C, Alewood P F, Holland J W. 2008. Analysis of the human casein phosphoproteome by 2-D electrophoresis and MALDI-TOF/TOF MS reveals new phosphoforms. Journal of Proteome Research, 7, 5017-5027. [19]Schmidt A, Csaszar E, Ammerer G, Mechtler K. 2008. Enhanced detection and identification of multiply phosphorylated peptides using TiO2 enrichment in combination with MALDI TOF/TOF MS. Proteomics, 8, 4577-4592. [20]Sorensen E S, Moller L, Vinther M, Petersen T E, Rasmussen L K. 2003. The phosphorylation pattern of human alphas1-casein is markedly different from the ruminant species. European Journal of Biochemistry, 270, 3651-3655. [21]Speicher K, Kolbas O, Harper S, Speicher D. 2000. Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. Journal of Biomolecular Techniques, 11, 74-86. [22]Steen H, Pandey A, Andersen J S, Mann M. 2002. Analysis of tyrosine phosphorylation sites in signaling molecules by a phosphotyrosine-specific immonium ion scanning method. Science’s STKE, 2002, pl16. [23]Thingholm T E, Jensen O N, Larsen M R. 2009. Analytical strategies for phosphoproteomics. Proteomics, 9, 1451-1468. [24]Thingholm T E, Jensen O N, Robinson P J, Larsen M R. 2008. SIMAC (sequential elution from IMAC), a phosphoproteomics strategy for the rapid separation of monophosphorylated from multiply phosphorylated peptides. Molecular & Cellular Proteomics, 7, 661-671. [25]Thingholm T E, Jorgensen T J, Jensen O N, Larsen M R. 2006. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nature Protocols, 1, 1929-1935. [26]Trinidad J C, Specht C G, Thalhammer A, Schoepfer R, Burlingame A L. 2006. Comprehensive identification of phosphorylation sites in postsynaptic density preparations. Molecular & Cellular Proteomics, 5, 914-922. [27]Yang Y X, Zhao X X, Zhang Y. 2009. Proteomic analysis of mammary tissues from healthy cows and clinical mastitic cows for identification of disease-related proteins. Veterinary Research Communications, 33, 295-303. [28]Yu Z, Han G, Sun S, Jiang X, Chen R, Wang F, Wu R, Ye M, Zou H. 2009. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Analytical Chimica Acta, 636, 34-41. |