Aguero M, Gomez-Tejedor C, Angeles Cubillo M, Rubio C, Romero E, Jimenez-Clavero A. 2008. Real-time fluorogenic reverse transcription polymerase chain reaction assay for detection of African horse sickness virus. Journal of Veterinary Diagnostic Investigation, 20, 325–328.
Barnard B J. 1998. Epidemiology of African horse sickness and the role of the zebra in South Africa. Archives of Virology, Supplementum, 14, 13–19.
Bunpapong N, Charoenkul K, Nasamran C, Chamsai E, Udom K, Boonyapisitsopa S, Tantilertcharoen R, Kesdangsakonwut S, Techakriengkrai N, Suradhat S, Thanawongnuwech R, Amonsin A. 2021. African horse sickness virus serotype 1 on horse farm, Thailand, 2020. Emerging Infectious Diseases, 27, 2208–2211.
Chen C, Li X N, Li G X, Zhao L, Duan S X, Yan T F, Feng Z S, Ma X J. 2018. Use of a rapid reverse-transcription recombinase aided amplification assay for respiratory syncytial virus detection. Diagnostic Microbiology and Infectious Disease, 90, 90–95.
Chen J S, Ma E, Harrington L B, Da Costa M, Tian X, Palefsky J M, Doudna J A. 2018. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 360, 436–439.
Chen K, Hu Z, Yang G, Guo W, Qi T, Liu D, Wang Y, Du C, Wang X. 2022. Development of a duplex real-time PCR assay for simultaneous detection and differentiation of Theileria equi and Babesia caballi. Transboundary and Emerging Diseases, 69, e1338-e1349.
Gootenberg J S, Abudayyeh O O, Kellner M J, Joung J, Collins J J, Zhang F. 2018. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science, 360, 439–444.
Guthrie A J, Maclachlan N J, Joone C, Lourens C W, Weyer C T, Quan M, Monyai M S, Gardner I A. 2013. Diagnostic accuracy of a duplex real-time reverse transcription quantitative PCR assay for detection of African horse sickness virus. Journal of Virological Methods, 189, 30–35.
Li X, Zhu S, Zhang X, Ren Y, He J, Zhou J, Yin L, Wang G, Zhong T, Wang L, Xiao Y, Zhu C, Yin C, Yu X. 2023. Advances in the application of recombinase-aided amplification combined with CRISPR-Cas technology in quick detection of pathogenic microbes. Frontiers in Bioengineering and Biotechnology, 11, 1215466.
Maurer L M, Paslaru A, Torgerson P R, Veronesi E, Mathis A. 2022. Vector competence of Culicoides biting midges from Switzerland for African horse sickness virus and epizootic haemorrhagic disease virus. Schweiz Arch Tierheilkd, 164, 66–70.
Myhrvold C, Freije C A, Gootenberg J S, Abudayyeh O O, Metsky H C, Durbin A F, Kellner M J, Tan A L, Paul L M, Parham L A, Garcia K F, Barnes K G, Chak B, Mondini A, Nogueira M L, Isern S, Michael S F, Lorenzana I, Yozwiak N L, Macinnis B L, et al. 2018. Field-deployable viral diagnostics using CRISPR-Cas13. Science, 360, 444–448.
Wang L, Sun J, Zhao J, Bai J, Zhang Y, Zhu Y, Zhang W, Wang C, Langford P R, Liu S, Li G. 2023. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2. Talanta, 267, 125202.
Wang Y, Cui Y, Yu Z, Li Y, Bai C, Sun P, Zhu W, Li Y. 2020. Development of a recombinase-aided amplification assay for detection of orf virus. Journal of Virological Methods, 280, 113861.
WOAH (World Organization for Animal Health). 2019. Terrestrial manual-SECTION 3.6. Equidae-Chapter 3.6.1-African Horse Sickness (Infection With African Horse Sickness Virus).
Xue G, Li S, Zhang W, Du B, Cui J, Yan C, Huang L, Chen L, Zhao L, Sun Y, Li N, Zhao H, Feng Y, Wang Z, Liu S, Zhang Q, Xie X, Liu D, Yao H, Yuan J. 2020. Reverse-transcription recombinase-aided amplification assay for rapid detection of the 2019 novel coronavirus (SARS-CoV-2). Analytical Chemistry, 92, 9699–9705.
|