Journal of Integrative Agriculture ›› 2022, Vol. 21 ›› Issue (5): 1424-1435.DOI: 10.1016/S2095-3119(20)63597-3

• • 上一篇    下一篇

  

  • 收稿日期:2020-08-19 接受日期:2020-12-17 出版日期:2022-05-01 发布日期:2022-12-17

Assessment of the potential toxicity of insecticidal compounds to Peristenus spretus, a parasitoid of mirid bugs

ZHAO Man1, 2, LI Yun-he1, NIU Lin-lin1, CHEN Lin1, LIANG Ge-mei1     

  1. 1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China 
    2 College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, P.R.China 
  • Received:2020-08-19 Accepted:2020-12-17 Online:2022-05-01 Published:2022-12-17
  • About author:ZHAO Man, Mobile: +86-13693160661, E-mail: zhaoman821 @126.com; Correspondence LIANG Ge-mei, Tel: +86-10-62815929, E-mail: gmliang@ippcaas.cn
  • Supported by:
    This research was supported by the Key Project for Breeding Genetically Modified Organisms, China (2016ZX08011-002) and China’s Donation to the CABI Development Fund.

摘要:

随着我国Bt作物种植面积的增加,绿盲蝽和其他盲蝽逐渐成为重要农业害虫因为它们对作物中的Bt蛋白不敏感。此外,Bt作物种植后杀虫剂使用量的减少也增加了盲蝽爆发的严重程度。红颈常室茧蜂是一种盲蝽若虫的寄生蜂,但它对Bt蛋白的敏感性尚不清楚。在当前研究中,我们利用添加Bt蛋白(400 µg g-1)或不添加Bt蛋白的10%蜂蜜水,发展了一种评价Bt蛋白(Cry1Ab, Cry1Ac, Cry1F, Cry2Aa和Cry2Ab)对红颈常室茧蜂成虫影响的直接暴露试验体系。结果显示,红颈常室茧蜂成虫的存活和繁殖情况能够被半胱氨酸蛋白酶抑制剂E-64(阳性对照)显著抑制,但不受供试5种Bt蛋白影响。此外,寄生蜂体内的消化酶、解毒酶和保护酶活性也不受供试Bt蛋白影响,但取食含E-64的饲料后,它们受到显著影响。然后我们建立了一种三级营养试验,来测定供试5种Bt蛋白对红颈常室茧蜂幼虫和蛹的影响,在这个试验中,以取食含有Cry蛋白饲料的盲蝽若虫作为红颈常室茧蜂的寄主昆虫。三级营养试验的结果显示,即使被寄主的绿盲蝽体内含有大量Bt蛋白,以它们为寄主的红颈常室茧蜂寄生蜂化蛹率和羽化率也没有受到显著影响。上述结果整体表明,研究中发展的这2个生物试验可以用来评价杀虫物质对红颈常室茧蜂的毒性,供试的Cry蛋白对红颈常室茧蜂无毒性


Abstract: With the increased cultivation of Bt crops in China, Apolygus lucorum and other mirid bugs have emerged as important agricultural pests because they are insensitive to the Bt proteins.  In addition, the reduction of pesticide applications after planting Bt crops also increases the severity of mirid bug outbreaks.  Peristenus spretus is a parasitoid of mirid nymphs, but its sensitivity to Bt proteins is not known.  In the current study, we developed a dietary exposure assay to assess the effects of Bt proteins (Cry1Ab, Cry1Ac, Cry1F, Cry2Aa, and Cry2Ab) on P. spretus adults using a diet consisting of a 10% honey solution with or without Bt proteins at 400 µg g–1 diet.  The results showed that the survival and reproduction of P. spretus adults were reduced by the cysteine protease inhibitor E-64 (a positive control) but were not affected by any of the five Bt proteins.  The activities of digestive, detoxifying, and antioxidant enzymes in P. spretus were also unaffected by diets containing the Cry proteins, but they were significantly affected by the diet containing E-64.  We then developed a tri-trophic bioassay to determine the effects of the five Bt proteins on P. spretus larvae and pupae.  In this assay, A. lucorum nymphs fed an artificial diet containing Cry proteins were used as the hosts for P. spretus.  The results of the tri-trophic assay indicated that neither the pupation rate nor the eclosion rate of the P. spretus parasitoids were significantly affected by the presence of high concentrations of Bt proteins in the parasitized A. lucorum nymphs.  The overall results indicate that these two assays can be used to evaluate the toxicity of insecticidal compounds to P. spretus and that the tested Cry proteins are not toxic to P. spretus.  

Key words: transgenic crops , plant bugs ,  parasitic natural enemy ,  Cry proteins ,  non-target risk assessment