Journal of Integrative Agriculture ›› 2021, Vol. 20 ›› Issue (9): 2450-2462.DOI: 10.1016/S2095-3119(20)63455-4

所属专题: 植物病理合辑Plant Protection—Plant Pathology 植物细菌真菌合辑Plant Bacteria/Fungus

• 论文 • 上一篇    下一篇

  

  • 收稿日期:2020-06-08 出版日期:2021-09-01 发布日期:2021-07-20

Wheat straw biochar amendment suppresses tomato bacterial wilt caused by Ralstonia solanacearum: Potential effects of rhizosphere organic acids and amino acids

TIAN Ji-hui1, 2, 3, RAO Shuang2, GAO Yang2, LU Yang2, CAI Kun-zheng1, 2, 3 
  

  1. 1 Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou 510642, P.R.China
    2 College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P.R.China
    3 Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, P.R.China
  • Received:2020-06-08 Online:2021-09-01 Published:2021-07-20
  • Contact: Correspondence CAI Kun-zheng, Tel: +86-20-85280211, E-mail: kzcai@scau.edu.cn; TIAN Ji-hui, Tel: +86-20-85280787, E-mail: jhtian@scau.edu.cn
  • About author:
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (31870420 and 41807084), the Natural Science Foundation of Guangdong Province, China (2017A030313177 and 2018A030310214), and the Science and Technology Project of Guangdong Province, China (2019B030301007).

摘要:

本研究旨在评估生物炭控制番茄枯萎病的有效性,并探讨生物炭引起的根际化合物组成变化、病原菌和番茄生长之间的相互作用。设置了小麦秸秆生物炭添加(CK:不添加生物炭,BC:添加4%的生物炭)与青枯雷尔氏菌(Ralstonia solanacearum)接种(NI:不接种青枯菌,I:接种青枯菌)对番茄根际有机酸和氨基酸组分、微生物活性、养分有效性和番茄发病率影响的盆栽试验;同时研究了纯培养条件下,不同处理的番茄根际提取物对青枯菌生长的影响。盆栽试验结果表明,生物炭添加使番茄青枯病发病率降低了61%到78%,同时促进了番茄植株的生长。培养试验的结果进一步证实,添加生物炭的番茄根际提取物可显著抑制青枯菌的生长,其最终青枯菌密度显著低于未添加生物炭的根际提取物。这种正向的“生物炭效应”可能与根际微生物活性的增强和根际有机酸、氨基酸组分的改变有关。具体而言,生物炭诱导了番茄根际柠檬酸和赖氨酸含量升高,但水杨酸含量降低,从而增强了微生物活性,使番茄根际不适合青枯菌的发育。此外,微生物活性增强活化的土壤养分和/或生物炭输入的养分促进了植株生长,进一步强化了番茄对青枯病的抗性。综合以上结果,本文提出生物炭控制番茄枯萎病的能力与其诱导的番茄根际有机酸、氨基酸组成的变化有关,相关结论仍需田间长期试验的进一步验证。


Abstract:

Complex interactions based on host plant, rhizosphere microorganisms and soil microenvironment are presumed to be responsible for the suppressive properties of biochar against soil-borne diseases, although the underlying mechanisms are not well understood.  This study is designed to evaluate the efficacy of biochar amendment for controlling tomato bacterial wilt caused by Ralstonia solanacearum, and to explore the interactions between biochar-induced changes in rhizosphere compound composition, the pathogen and tomato growth.  The results showed that biochar amendment decreased disease incidence by 61–78% and simultaneously improved plant growth.  The positive ‘biochar effect’ could be associated with enhanced microbial activity and alterations in the rhizosphere organic acid and amino acid composition.  Specifically, elevated rhizosphere citric acid and lysine, but reduced salicylic acid, were induced by biochar which improved microbial activity and rendered the rhizosphere unsuitable for the development of R. solanacearum.  In addition, nutrients which were either made more available by the stimulated microbial activity or supplied by the biochar could improve plant vigor and potentially enhance tomato resistance to diseases.  Our findings highlight that biochar’s ability to control tomato bacterial wilt could be associated with the alteration of the rhizosphere organic acid and amino acid composition, however, further research is required to verify these ‘biochar effects’ in field conditions.
 

Key words: rhizosphere compounds ,  microbial activity ,  citric acid ,  lysine ,  salicylic acid