Journal of Integrative Agriculture ›› 2021, Vol. 20 ›› Issue (7): 1743-1752.DOI: 10.1016/S2095-3119(20)63345-7

所属专题: 麦类遗传育种合辑Triticeae Crops Genetics · Breeding · Germplasm Resources

• 论文 • 上一篇    下一篇

  

  • 收稿日期:2020-01-09 出版日期:2021-07-01 发布日期:2021-06-02

Heredity and gene mapping of a novel white stripe leaf mutant in wheat

LI Hui-juan1*, JIAO Zhi-xin1*, NI Yong-jing2, JIANG Yu-mei1, LI Jun-chang1, PAN Chao1, ZHANG Jing1, SUN Yu-long1, AN Jun-hang1, LIU Hong-jie2, LI Qiao-yun1, NIU Ji-shan1
  

  1. 1 National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science/Henan Agricultural University, Zhengzhou 450046, P.R.China
    2 Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu 476000, P.R.China
  • Received:2020-01-09 Online:2021-07-01 Published:2021-06-02
  • Contact: Correspondence NIU Ji-shan, Tel: +86-371-56990186, E-mail: jsniu@henau.edu.cn
  • About author:LI Hui-juan, E-mail: lhj19960901@163.com;* These authors contributed equally to this study.
  • Supported by:
    This work was supported by the National Natural Science Foundation of China (NSFC, 31571646) and the Science and Technology Project in Henan Province, China (182102110147).

摘要:

斑点叶(spl)突变体属于一种植物类病斑突变体。我们通过甲基磺酸乙酯(EMS)诱变小麦栽培品种国麦301,获得了一些类病斑突变体,其中一种因其叶片上有白色条纹而被命名为白色条纹叶(wsl)突变体。本文报告这个新的小麦突变体wsl的遗传和基因定位。在整个生育期,突变体wsl的叶片上均有白色条纹出现。随着植株的生长,白色条纹加重,坏死斑面积增大。突变体wsl在拔节前长势较弱,拔节过后长势逐渐恢复。突变体wsl旗叶的长和宽、单株有效穗数和千粒重均显著低于其野生型亲本国麦301。遗传分析表明,wsl的白色条纹性状受1对隐性核基因控制,命名为wsl。利用两个F2群体(wsl×中国春和wsl×济麦22),通过SSR分子标记连锁分析,将wsl基因定位在小麦6BS染色体臂上。在wsl×中国春杂交分离群体中,筛选到4个与wsl基因连锁的标记,Xgpw1079-Xwmc104-Xgwm508-wsl-Xgpw7651,遗传距离分别为7.1, 5.2, 8.7和4.4 cM。在wsl×济麦22杂交分离群体中,筛选到3个与wsl基因连锁的标记,Xgwm508-Xwmc494-Xgwm518-wsl,遗传距离分别为3.5, 1.6和8.2 cM。参考中国春基因组序列,wsl位于6BS染色体88 Mb (Xgwm518)~ 179 Mb (Xgpw7651)之间的91 Mb物理区间内。突变体wsl是研究小麦叶片发育分子机制的重要新种质


Abstract:

Spotted leaf (spl) mutant is a type of leaf lesion mimic mutants in plants.  We obtained some lesion mimic mutants from ethyl methane sulfonate (EMS)-mutagenized wheat (Triticum aestivum L.) cultivar Guomai 301 (wild type, WT), and one of them was named as white stripe leaf (wsl) mutant because of the white stripes on its leaves.  Here we report the heredity and gene mapping of this novel wheat mutant wsl.  There are many small scattered white stripes on the leaves of wsl throughout its whole growth period.  As the plants grew, the white stripes became more severe and the necrotic area expanded.  The mutant wsl grew only weakly before the jointing stage and gradually recovered after jointing.  The length and width of the flag leaf, spike number per plant and thousand-grain weight of wsl were significantly lower than those of the WT.  Genetic analysis indicated that the trait of white stripe leaf was controlled by a recessive gene locus, named as wsl, which was mapped on the short arm of chromosome 6B by SSR marker assay.  Four SSR markers in the F2 population of wsl×CS were linked to wsl in the order of Xgpw1079Xwmc104Xgwm508-wslXgpw7651 at 7.1, 5.2, 8.7, and 4.4 cM, respectively and three SSR markers in the F2 population of wsl×Jimai 22 were linked to wsl in the order of Xgwm508Xwmc494Xgwm518-wsl at 3.5, 1.6 and 8.2 cM, respectively.  In comparison to the reference genome sequence of Chinese Spring (CS), wsl is located in a 91-Mb region from 88 Mb (Xgwm518) to 179 Mb (Xgpw7651) on chromosome 6BS.  Mutant wsl is a novel germplasm for studying the molecular mechanism of wheat leaf development.

Key words: wheat (Triticum aestivum L.) ,  mutant ,  white stripe leaf (wsl) ,  heredity ,  gene mapping