Biradar C M, Thenkabail P S, Noojipady P, Li Y, Dheeravath V, Turral H, Velpuri M, Gumma M K, Gangalakunta O R P, Cai X L, Xiao X, Schull M A, Alankara R D, Gunasinghe S, Mohideen S. 2009. A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing. International Journal of Applied Earth Observation and Geoinformation, 11, 114–129.Bolton D K, Friedl M A. 2013. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173, 74–84.Bruzzone L, Roli F, Serpico S B. 1995. An extension of the Jeffreys-Matusita distance to multiclass cases for feature selection. IEEE Transactions on Geoscience and Remote Sensing, 33, 1318–1321.Carrão H, Gonçalves P, Caetano M. 2008. Contribution of multispectral and multitemporal information from MODIS images to land cover classification. Remote Sensing of Environment, 112, 986–997.Chang J, Hansen M C, Pittman K, Carroll M, DiMiceli C. 2007. Corn and soybean mapping in the United States using MODIS time-series data sets. Agronomy Journal, 99, 1654–1664.Colditz R R, López Saldaña G, Maeda P, Espinoza J A, Tovar C M, Hernández A V, Benítez C Z, Cruz López I, Ressl R. 2012. Generation and analysis of the 2005 land cover map for Mexico using 250 m MODIS data. Remote Sensing of Environment, 123, 541–552.Colditz R R, Schmidt M, Conrad C, Hansen M C, Dech S. 2011. Land cover classification with coarse spatial resolution data to derive continuous and discrete maps for complex regions. Remote Sensing of Environment, 115, 3264–3275.Duro D C, Franklin S E, Dubé M G. 2012. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, 118, 259–272.Foerster S, Kaden K, Foerster M, Itzerott S. 2012. Crop type mapping using spectral-temporal profiles and phenological information. Computers and Electronics in Agriculture, 89, 30–40.Hansen M C, Egorov A, Potapov P V, Stehman S V, Tyukavina A, Turubanova S A, Roy D P, Goetz S J, Loveland T R, Ju J, Kommareddy A, Kovalskyy V, Forsyth C, Bents T. 2014. Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sensing of Environment, 140, 466–484.Hu Q, Wu W, Xia T, Yu Q, Yang P, Li Z, Song Q. 2013. Exploring the use of google earth imagery and object-based methods in land use/cover mapping. Remote Sensing, 5, 6026–6042.Loew F, Michel U, Dech S, Conrad C. 2013. Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using Support Vector Machines. ISPRS Journal of Photogrammetry and Remote Sensing, 85, 102–119.Mountrakis G, Im J, Ogole C. 2011. Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66, 247–259.Pal M. 2013. Hybrid genetic algorithm for feature selection with hyperspectral data. Remote Sensing Letters, 4, 619–628.Pan Y, Li L, Zhang J, Liang S, Zhu X, Sulla-Menashe D. 2012. Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index. Remote Sensing of Environment, 119, 232–242.Peña-Barragán J M, Ngugi M K, Plant R E, Six J. 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115, 1301–1316.Piiroinen R, Heiskanen J, Mõttus M, Pellikka P. 2015. Classification of crops across heterogeneous agricultural landscape in Kenya using AisaEAGLE imaging spectroscopy data. International Journal of Applied Earth Observation and Geoinformation, 39, 1–8.Shi S Q, Cao Q W, Yao Y M, Tang H J, Yang P, Wu W B, Xu H Z, Liu J, Li Z G. 2014. Influence of climate and socio-economic factors on the spatio-temporal variability of soil organic matter: A case study of central Heilongjiang Province, China. Journal of Integrative Agriculture, 13, 1486–1500.Somers B, Asner G P. 2012. Hyperspectral time series analysis of native and invasive species in Hawaiian rainforests. Remote Sensing, 4, 2510–2529.Somers B, Asner G P. 2013. Multi-temporal hyperspectral mixture analysis and feature selection for invasive species mapping in rainforests. Remote Sensing of Environment, 136, 14–27.Somers B, Asner G P. 2014. Tree species mapping in tropical forests using multi-temporal imaging spectroscopy: Wavelength adaptive spectral mixture analysis. International Journal of Applied Earth Observation and Geoinformation, 31, 57–66.Sun J, Wu W, Tang H, Liu J. 2015. Spatiotemporal patterns of non-genetically modified crops in the era of expansion of genetically modified food. Scientific Reports, 5, doi: 10.1038/srep14180Wang J, Xiao X, Qin Y, Dong J, Zhang G, Kou W, Jin C, Zhou Y, Zhang Y. 2015. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images. Scientific Reports, 5, doi: 10.1038/srep10088Wardlow B D, Egbert S L. 2008. Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the US Central Great Plains. Remote Sensing of Environment, 112, 1096–1116.Wardlow B D, Egbert S L, Kastens J H. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sensing of Environment, 108, 290–310.Wu B, Meng J, Li Q, Yan N, Du X, Zhang M. 2013. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. International Journal of Digital Earth, 7, 113–137.Wu W B, Yu Q Y, Peter V H, You L Z, Yang P, Tang H J. 2014. How could agricultural land systems contribute to raise food production under global change? Journal of Integrative Agriculture, 13, 1432–1442.Xiao X, Boles S, Frolking S, Li C, Babu J Y, Salas W, Moore III B. 2006. Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100, 95–113.Xiao X, Boles S, Liu J, Zhuang D, Frolking S, Li C, Salas W, Moore III B. 2005. Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sensing of Environment, 95, 480–492.Yang C, Everitt J H, Murden D. 2011. Evaluating high resolution SPOT 5 satellite imagery for crop identification. Computers and Electronics in Agriculture, 75, 347–354.Zhang G, Xiao X, Dong J, Kou W, Jin C, Qin Y, Zhou Y, Wang J, Menarguez M A, Biradar C. 2015. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data. ISPRS Journal of Photogrammetry and Remote Sensing, 106, 157–171.Zhang J, Feng L, Yao F. 2014. Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information. ISPRS Journal of Photogrammetry and Remote Sensing, 94, 102–113.Zhong L, Gong P, Biging G S. 2014. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, 1–13.Zhong L, Hawkins T, Biging G S, Gong P. 2011. A phenology-based approach to map crop types in the San Joaquin Valley, California. International Journal of Remote Sensing, 32, 7777–7804.Zhou F, Zhang A, Townley-Smith L. 2013. A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level. ISPRS Journal of Photogrammetry and Remote Sensing, 84, 114–129. |