Ban Y. 2003. Synergy of multitemporal ERS-1 SAR and Landsat TM data for classification of agricultural crops. Canadian Journal of Remote Sensing, 29, 518–526.Van Beijma S, Comber A, Lamb A. 2014. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sensing of Environment, 149, 118–129.Castillejo-González I L, López-Granados F, García-Ferrer A, Peña-Barragán J M, Jurado-Expósito M, de la Orden M S, González-Audicana M. 2009. Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Computers and Electronics in Agriculture, 68, 207–215.Conrad C, Dech S, Dubovyk O, Fritsch S, Klein D, Löw F, Schorcht G, Zeidler J. 2014. Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images. Computers and Electronics in Agriculture, 103, 63–74.Doraiswamy P C, Hatfield J L, Jackson T J, Akhmedov B, Prueger J, Stern A. 2004. Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 92, 548–559.Drǎgu? L, Tiede D, Levick S R. 2010. ESP: A tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. International Journal of Geographical Information Science, 24, 859–871.Duro D C, Franklin S E, Dub E M G. 2012. Multi-scale object-based image analysis and feature selection of multi-sensor earth observation imagery using random forests. International Journal of Remote Sensing, 33, 4502–4526.Gallego F J, Kussul N, Skakun S, Kravchenko O, Shelestov A, Kussul O. 2014. Efficiency assessment of using satellite data for crop area estimation in Ukraine. International Journal of Applied Earth Observation and Geoinformation, 29, 22–30.Gao F, Masek J, Schwaller M, Hall F. 2006. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Transactions on Geoscience and Remote Sensing, 44, 2207–2218.Gao T, Zhu J, Zheng X, Shang G, Huang L, Wu S. 2015. Mapping spatial distribution of larch plantations from multi-seasonal Landsat-8 OLI imagery and multi-scale textures using random forests. Remote Sensing, 7, 1702–1720.Hao P, Zhan Y, Wang L, Niu Z, Shakir M. 2015. Feature selection of time series MODIS data for early crop classification using Random Forest: A case study in Kansas, USA. Remote Sensing, 7, 5347–5369.Hong G, Zhang A, Zhou F, Townley-Smith L, Brisco B, Olthof I. 2011. Crop-type identification potential of Radarsat-2 and MODIS images for the Canadian prairies. Canadian Journal of Remote Sensing, 37, 45–54.Hu Q, Wu W, Xia T, Yu Q, Yang P, Li Z, Song Q. 2013. Exploring the use of google earth imagery and object-based methods in land use/cover mapping. Remote Sensing, 5, 6026–6042.Karlson M, Ostwald M, Reese H, Sanou J, Tankoano B, Mattsson E. 2015. Mapping tree canopy cover and aboveground biomass in sudano-sahelian woodlands using Landsat 8 and Random Forest. Remote Sensing, 7, 10017–10041.Li Q, Wang C, Zhang B, Lu L. 2015. Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sensing, 7, 16091–16107.Lobell D B, Asner G P. 2004. Cropland distributions from temporal unmixing of MODIS data. Remote Sensing of Environment, 93, 412–422.Masialeti I, Egbert S D B. 2010. A comparative analysis of phenological curves for major crops in Kansas. GIScience & Remote Sensing, 2, 241–259.Ozdogan M. 2010. The spatial distribution of crop types from MODIS data: Temporal unmixing using independent component analysis. Remote Sensing of Environment, 114, 1190–1204.Peña J, Gutiérrez P, Hervás-Martínez C, Six J, Plant R, López-Granados F. 2014. Object-based image classification of summer crops with machine learning methods. Remote Sensing, 6, 5019–5041.Peña M A, Brenning A. 2015. Assessing fruit-tree crop classification from Landsat-8 time series for the Maipo Valley, Chile. Remote Sensing of Environment, 171, 234–244.Peña-Barragán J M, Ngugi M K, Plant R E, Six J. 2011. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sensing of Environment, 115, 1301–1316.Roelfsema C M, Lyons M, Kovacs E M, Maxwell P, Saunders M I, Samper-Villarreal J, Phinn S R. 2014. Multi-temporal mapping of seagrass cover, species and biomass: A semi-automated object based image analysis approach. Remote Sensing of Environment, 150, 172–187.Stumpf A, Kerle N. 2011. Object-oriented mapping of landslides using Random Forests. Remote Sensing of Environment, 115, 2564–2577.Tatsumi K, Yamashiki Y, Canales Torres M A, Taipe C L R. 2015. Crop classification of upland fields using Random Forest of time-series Landsat 7 ETM+ data. Computers and Electronics in Agriculture, 115, 171–179.Turker M O A. 2011. Field-based crop classification using SPOT4, SPOT5, IKONOS and QuickBird imagery for agricultural areas: A comparison study. International Journal of Remote Sensing, 32, 9735–9768.Vieira M A, Formaggio A R, Rennó C D, Atzberger C, Aguiar D A, Mello M P. 2012. Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas. Remote Sensing of Environment, 123, 553–562.Wang L, Yang R, Tian Q, Yang Y, Zhou Y, Sun Y, Mi X. 2015. Comparative analysis of GF-1 WFV, ZY-3 MUX, and HJ-1 CCD sensor data for grassland monitoring applications. Remote Sensing, 7, 2089–2108.Wardlow B D, Egbert S L, Kastens J H. 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the US Central Great Plains. Remote Sensing of Environment, 108, 290–310.Witharana C, Civco D L, Meyer T H. 2014. Evaluation of data fusion and image segmentation in earth observation based rapid mapping workflows. ISPRS Journal of Photogrammetry and Remote Sensing, 87, 1–18.Wu M, Huang W, Niu Z, Wang C. 2015. Combining HJ CCD, GF-1 WFV and MODIS data to generate daily high spatial resolution synthetic data for environmental process monitoring. International Journal of Environmental Research and Public Health, 12, 9920–9937.Wu W, Verburg P H, Tang H. 2014a. Climate change and the food production system: impacts and adaptation in China. Regional Environmental Change, 14, 1–5.Wu W, Yu Q, Peter V H, You L, Yang P, Tang H. 2014b. How could agricultural land systems contribute to raise food production under global change? Journal of Integrative Agriculture, 13, 1432–1442.Yu Q, Wu W, Liu Z, Verburg P H, Xia T, Yang P, Lu Z, You L, Tang H. 2014. Interpretation of climate change and agricultural adaptations by local household farmers: A case study at Bin County, Northeast China. Journal of Integrative Agriculture, 13, 1599–1608.Zhong L, Gong P, Biging G S. 2014. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sensing of Environment, 140, 1–13. |