[1]Aga D S, O’Connor S, Ensley S, Payero J O, Snow D, Tarkalson D. 2005. Determination of the persistence of tetracycline antibiotics and their degradates in manureamended soil using enzyme-linked immunosorbent assay and liquid chromatography-mass spectrometry. Journal of Agricultural Food Chemistry, 53, 7165-7171. [2]Anderson C R, Rupp H S, Wu W H. 2005. Complexities in tetracycline analysis-chemistry, matrix extraction, cleanup, and liquid chromatography. Journal of Chromatography (A), 1075, 23-32. [3]Ben W W, Qiang Z M, Adams C, Zhang H Q, Chen L P. 2008. Simultaneous determination of sulfonamides, tetracyclines and tiamulin in swine wastewater by solidphase extraction and liquid chromatography-mass spectrometry. Journal of Chromatography (A), 1202, 173-180. [4]Bendahl L, Stürup S, Gammelgaard B, Hansen S H. 2005. UPLC-ICP-MS-a fast technique for speciation analysis. Journal of Analytical Atomic Spectrometry, 20, 1287-1289. [5]Blackwell P A, Holten Lützhøft H C, Ma H P, Halling-Sørensen B, Boxall A B A, Kay P. 2004. Ultrasonic extraction of veterinary antibiotics from soils and pig slurry with SPE clean-up and LC-UV and fluorescence detection. Talanta, 64, 1058-1064. [6]Cherlet M, Schelkens M, Croubels S, Backer P D. 2003. Quantitative multi-residue analysis of tetracyclines and their 4-epimers in pig tissues by high-performance liquid chromatography combined with positive-ion electrospray ionization mass spectrometry. Analytica Chimica Acta, 492, 199-213. [7]Christian T, Schneider R J, Färber H A, Skutlarek D, Goldbach H E. 2003. Determination of antibiotic residues in manure, soil and surface waters. Acta Hydrochim Hydrobiol, 31, 36-44. [8]Cooper A D, Stubbings G W F, Kelly M, Tarbin J A, Farrington W H H, Shearer G. 1995. Improved method for the on-line metal chelate affinity chromatography-high-performance liquid chromatographic determination of tetracycline antibiotics in animal products. Journal of Chromatography (A), 812, 312-326. [9]De A J, Dong M Z, Yu J W, Hao W Z, Jin L C. 2008. Adsorption and cosorption of Cu (II) and tetracycline on two soils with different characteristics. Geoderma, 146, 224-230. [10]Hamscher G, Sczesny S, Höper H, Nau H. 2002. Determination of persistent tetracycline residues in soil fertilized with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. Analytical Chemistry, 74, 1509-1518. [11]Hamscher G, Pawelzick H T, Höper H, Nau H. 2005. Different behavior of tetracyclines and sulfonamides in sandy soils after repeated fertilization with liquid manure. Environmental Toxicology and Chemistry, 24, 861-872. [12]Jacobsen A M, Halling-Sorensen B, Ingerslev F, Hansen S H. 2004. Simultaneous extraction of tetracycline, macrolide and sulfonamide antibiotics from agricultural soils using pressurized liquid extraction, followed by solid-phase extraction and liquid chromatographytandem mass spectrometry. Journal of Chromatography (A), 1038, 157-170. [13]Jin H, Kumar A P, Paik D H, Ha K C, Yoo Y J, Lee Y I. 2010. Trace analysis of tetracycline antibiotics in human urine using UPLC-QToF mass spectrometry. Microchemical Journal, 94, 139-147. [14]Jia A, Xiao Y, Hu J Y, Asami M, Kunikane S. 2009. Simultaneous determination of tetracyclines and their degradation products in environmental waters by liquid chromatography-electrospray tandem mass spectrometry. Journal of Chromatography (A), 1216, 4655-4662. [15]Karci A, Balcioglu I A. 2009. Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of the Total Environment, 407, 4652-4664. [16]de Liguoro M, Cibin V, Capolongo F, Halling-Sørensen B, Montcsissa C. 2003. Use of oxytetracycline and tylosin in intensive calf farming: evaluation of transfer to manure and soil. Chemosphere, 52, 203-212. [17]Lindsey M E, Meyer M, Thurman E M. 2000. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Analytical Chemistry, 73, 4640-4646. [18]O’Connor S, Aga D S. 2007. Analysis of tetracycline antibiotics in soil: advances in extraction, clean up ,and quantification. Trends in Analytical Chemistry, 26, 456-462. [19]O’Connor S, Locke J, Aga D S. 2007. Addressing the challenges of tetracycline analysis in soil: extraction, clean-up, and matrix effects in LC-MS. Journal of Environmental Monitoring, 9, 1254-1262. [20]Oka H, Ito Y, Ikai Y, Kagami T, Harada K. 1998. Mass spectrometric analysis of tetracycline antibiotics in foods. Journal of Chromatography (A), 812, 309-319. [21]Oka H, Ito Y, Matsumoto H. 2000. Chromatographic analysis of tetracycline antibiotics in foods. Journal of Chromatography A, 882, 109-133. [22]Rabølle M, Spliid N H. 2000. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil. Chemosphere, 40, 715-722. [23]Revert S, Borrull F, Plcurull E, Marc R M. 2003. Determination of antibiotic compounds in water by solid-phase extraction high-performance liquid chromatography (electrospray) mass spectrometry. Journal of Chromatography (A), 1010, 225-232. [24]Schenck F J, Callery P S. 1998. Chromatographic methods of analysis of antibiotics in milk. Journal of Chromatography (A), 812, 99-109. [25]Tereza T, Jana O, Petr N, Miroslav F. 2010. High-throuthput analysis of tetracycline antibiotics and their epimers in liquid manure using ultra performance liquid chromatography with UV detection. Chemosphere, 78, 353-359. [26]Xu J Z, Ding T, Wu B, Yang W Q, Zhang X Y, Liu Y, Shen C Y, Jiang Y. 2008. Analysis of tetracycline residues in royal jelly by liquid chromatography-tandem mass spectrometry. Journal of Chromatography (B), 868, 42-48. [27]de Zan M M, García M D Gil, Culzoni M J, Siano R G, Goicoechea H C, Galera M M. 2008. Solving matrixeffects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modeling liquid chromatography data with multivariate curve resolutionalternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms I. effect of signal pre-treatment. Journal of Chromatography (A), 1179, 106-114. |