Journal of Integrative Agriculture ›› 2024, Vol. 23 ›› Issue (4): 1205-1221.DOI: 10.1016/j.jia.2024.01.014

• • 上一篇    下一篇

苹果属植物S-RNase基因型鉴定及起源演化分析

  

  • 收稿日期:2023-04-18 接受日期:2023-11-19 出版日期:2024-04-20 发布日期:2024-03-30

Identification of S-RNase genotype and analysis of its origin and evolutionary patterns in Malus plants

Zhao Liu1, 2, Yuan Gao1, Kun Wang1, Jianrong Feng2, Simiao Sun1, Xiang Lu1, 2, Lin Wang1, Wen Tian1, 2, Guangyi Wang1, Zichen Li1, Qingshan Li1, 2, Lianwen Li1, Dajiang Wang1#   

  1. 1 Research Institute of Pomology, Chinese Academy of Agricultural Sciences/Key Laboratory of Horticultural Crops Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Xingcheng 125100, China

    2 College of Agriculture, Shihezi University/Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Shihezi 832000, China

  • Received:2023-04-18 Accepted:2023-11-19 Online:2024-04-20 Published:2024-03-30
  • About author:Zhao Liu, E-mail: Lz__0427@163.com; #Correspondence Dajiang Wang, E-mail: dajiang0101@126.com
  • Supported by:
    This research was financially supported by the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2021-RIP-02).

摘要: 鉴定苹果属植物S基因型对于新基因的发掘、苹果的栽培生产、新品种选育以及自交不亲和的起源演化等都具有极大的推动作用。本试验以矮花红、西蜀海棠、热磙子等88份苹果属资源为材料,利用7对苹果属S-RNase基因特异性引物,以叶片DNA为模板进行PCR扩增。结果表明:鉴定的供试材料中,70份材料得到完整的S-RNase基因型,18份材料仅鉴定出1个S-RNase基因。经同源性比较分析,共获得13种S-RNase基因型,分别为:S1S2(矮花红等)、S1S28(隰县海棠等)、S1S51(河北平顶海棠)、S1S3(向阳村大果等)、S2S3(窄叶海棠等)、S3S51(西山1号)、S3S28(黄色立哈尔德等)、S2S28(红海棠等)、S4S28(波11)、S7S28(酒泉沙果)、S10Se(东城贯13号)、S10S21(东香蕉)、SeS51(熊岳海棠)。供试材料中S基因出现频率显示:不同的S基因在苹果属资源中出现的频率不同,在种间及种内出现的频率亦不相同。其中出现频率最高的为S3 (68.18%),其次为S1 (42.04%)。此外,系统进化树及起源演化分析表明,S基因的分化在苹果属各个种形成之前就已完成,栽培种亦演化出了新的S基因,并且分析认为S50基因是苹果属植物最古老的S等位基因,苹果栽培种中的S1S29S33基因可能最初分别起源于新疆野苹果、湖北海棠及陇东海棠。除新疆野苹果外,陇东海棠和锡金海棠可能也参与了部分中国苹果的起源演化过程。

Abstract:

Identification of the S genotype of Malus plants will greatly promote the discovery of new genes, the cultivation and production of apple, the breeding of new varieties, and the origin and evolution of self-incompatibility in Malus plants.  In this experiment, 88 Malus germplasm resources, such as Aihuahong, Xishuhaitang, and Reguanzi, were used as materials.  Seven gene-specific primer combinations were used in the genotype identification.  PCR amplification using leaf DNA produced a single S-RNase gene fragment in all materials.  The results revealed that 70 of the identified materials obtained a complete S-RNase genotype, while only one S-RNase gene was found in 18 of them.  Through homology comparison and analysis, 13 S-RNase genotypes were obtained: S1S2 (Aihuahong, etc.), S1S28 (Xixian Haitang, etc.), S1S51 (Hebei Pingdinghaitang), S1S3 (Xiangyangcun Daguo, etc.), S2S3 (Zhaiyehaitang, etc.), S3S51 (Xishan 1), S3S28 (Huangselihaerde, etc.), S2S28 (Honghaitang, etc.), S4S28 (Bo 11), S7S28 (Jiuquan Shaguo), S10Se (Dongchengguan 13), S10S21 (Dongxiangjiao) and SeS51 (Xiongyue Haitang).  Simultaneously, the frequency of the S gene in the tested materials was analyzed.  The findings revealed that different S genes had varying frequencies in Malus resources, as well as varying frequencies between intraspecific and interspecific.  S3 had the highest frequency of 68.18%, followed by S1 (42.04%).  In addition, the phylogenetic tree and origin evolution analysis revealed that the S gene differentiation was completed prior to the formation of various apple species, that cultivated species also evolved new S genes, and that the S50 gene is the oldest S allele in Malus plants.  The S1, S29, and S33 genes in apple-cultivated species, on the other hand, may have originated in M. sieversii, M. hupehensis, and M. kansuensis, respectively.  In addition to M. sieversii, M. kansuensis and M. sikkimensis may have also played a role in the origin and evolution of some Chinese apples.

Key words: Malus ,  S-RNase genotype ,  self-incompatibility ,  origin and evolution