Aebi M, Gassenhuber J, Domdey H, Te Heesen S. 1996. Cloning and characterization of the ALG3 gene of Saccharomyces cerevisiae. Glycobiology, 6, 439–444.
Besse W, Chang A R, Luo J Z, Triffo W J, Moore B S, Gulati A, Hartzel D N, Mane S, Regeneron Genetics C, Torres V E, Somlo S, Mirshahi T. 2019. ALG9 Mutation carriers develop kidney and liver cysts. Journal of the American Society of Nephrology, 30, 2037–2039.
Bickel T, Lehle L, Schwarz M, Aebi M, Jakob C A. 2005. Biosynthesis of lipid-linked oligosaccharides in Saccharomyces cerevisiae: Alg13p and Alg14p form a complex required for the formation of GlcNAc(2)-PP-dolichol. Journal of Biological Chemistry, 280, 34500–34506.
Burda P, Te Heesen S, Brachat A, Wach A, Dusterhoft A, Aebi M. 1996. Stepwise assembly of the lipid-linked oligosaccharide in the endoplasmic reticulum of Saccharomyces cerevisiae: Identification of the ALG9 gene encoding a putative mannosyl transferase. Proceedings of the National Academy of Sciences of the United States of America, 93, 7160–7165.
Burda P, Jakob C A, Beinhauer J, Hegemann J H, Aebi M. 1999. Ordered assembly of the asymmetrically branched lipid-linked oligosaccharide in the endoplasmic reticulum is ensured by the substrate specificity of the individual glycosyltransferases. Glycobiology, 9, 617–625.
Chen D, Hu H, He W, Zhang S, Tang M, Xiang S, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen X, Xing J. 2022. Endocytic protein Pal1 regulates appressorium formation and is required for full virulence of Magnaporthe oryzae. Molecular Plant Pathology, 23, 133–147.
Chen X, Liu C, Tang B, Ren Z, Wang G, Liu W. 2020. Quantitative proteomics analysis reveals important roles of N-glycosylation on ER quality control system for development and pathogenesis in Magnaporthe oryzae. PLoS Pathogens, 16, e1008355.
Chen X, Shi T, Yang J, Shi W, Gao X, Chen D, Xu X, Xu J, Talbot N J, Peng Y. 2014. N-glycosylation of effector proteins by an alpha–1,3-mannosyltransferase is required for the rice blast fungus to evade host innate immunity. Plant Cell, 26, 1360–1376.
Deng S, Sun W, Dong L, Cui G, Deng Y. 2019. MoGT2 is essential for morphogenesis and pathogenicity of Magnaporthe oryzae. mSphere, 4, e00309–e00319.
Diaz-Jimenez D F. 2017. Fungal mannosyltransferases as fitness attributes and their contribution to virulence. Current Protein & Peptide Science, 18, 1065–1073.
Ebbole D J. 2007. Magnaporthe as a model for understanding host-pathogen interactions. Annual Review of Phytopathology, 45, 437–456.
Eckert V, Blank M, Mazhari-Tabrizi R, Mumberg D, Funk M, Schwarz R T. 1998. Cloning and functional expression of the human GlcNAc–1-P transferase, the enzyme for the committed step of the dolichol cycle, by heterologous complementation in Saccharomyces cerevisiae. Glycobiology, 8, 77–85.
Fernandez-Alvarez A, Elias-Villalobos A, Jimenez-Martin A, Marin-Menguiano M, Ibeas J I. 2013. Endoplasmic reticulum glucosidases and protein quality control factors cooperate to establish biotrophy in Ustilago maydis. Plant Cell, 25, 4676–4690.
Foster A J, Ryder L S, Kershaw M J, Talbot N J. 2017. The role of glycerol in the pathogenic lifestyle of the rice blast fungus Magnaporthe oryzae. Environmental Microbiology, 19, 1008–1016.
Frank C G, Aebi M. 2005. ALG9 mannosyltransferase is involved in two different steps of lipid-linked oligosaccharide biosynthesis. Glycobiology, 15, 1156–1163.
Gao X, Moriyama S, Miura N, Dean N, Nishimura S. 2008. Interaction between the C termini of Alg13 and Alg14 mediates formation of the active UDP-N-acetylglucosamine transferase complex. Journal of Biological Chemistry, 283, 32534–32541.
Gao X, Nishikawa A, Dean N. 2004. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology, 14, 559–570.
Gao X, Tachikawa H, Sato T, Jigami Y, Dean N. 2005. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. Journal of Biological Chemistry, 280, 36254–36262.
Garcia-Rodriguez L J, Valle R, Duran A, Roncero C. 2005. Cell integrity signaling activation in response to hyperosmotic shock in yeast. FEBS Letters, 579, 6186–6190.
Gruszewska E, Grytczuk A, Chrostek L. 2021. Glycosylation in viral hepatitis. Biochimica et Biophysica Acta (BBA) - General Subjects, 1865, 129997.
Helenius A, Aebi M. 2001. Intracellular functions of N-linked glycans. Science, 291, 2364–2369.
Helenius A, Aebi M. 2004. Roles of N-linked glycans in the endoplasmic reticulum. Annual Review of Biochemistry, 73, 1019–1049.
Helenius J, Ng D T, Marolda C L, Walter P, Valvano M A, Aebi M. 2002. Translocation of lipid-linked oligosaccharides across the ER membrane requires Rft1 protein. Nature, 415, 447–450.
Hirata T, Kizuka Y. 2021. N-glycosylation. Advances in Experimental Medicine and Biology, 1325, 3–24.
Hohmann S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiology and Molecular Biology Reviews, 66, 300–372.
Hohmann S. 2009. Control of high osmolarity signalling in the yeast Saccharomyces cerevisiae. FEBS Letters, 583, 4025–4029.
Kong S, Park S Y, Lee Y H. 2015. Systematic characterization of the bZIP transcription factor gene family in the rice blast fungus, Magnaporthe oryzae. Environmental Microbiology, 17, 1425–1443.
Kukuruzinska M A, Lennon-Hopkins K. 1999. ALG gene expression and cell cycle progression. Biochimica et Biophysica Acta (BBA: General Subjects), 1426, 359–372.
Lecointe K, Cornu M, Leroy J, Coulon P, Sendid B. 2019. Polysaccharides cell wall architecture of mucorales. Frontiers in Microbiology, 10, 469.
Levin D E. 2005. Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 69, 262–291.
Li C L, Chen G, Webb A N, Shaulsky G. 2015. Altered N-glycosylation modulates TgrB1- and TgrC1-mediated development but not allorecognition in Dictyostelium. Journal of Cell Science, 128, 3990–3996.
Li M, Liu X, Liu Z, Sun Y, Liu M, Wang X, Zhang H, Zheng X, Zhang Z. 2016. Glycoside hydrolase MoGls2 controls asexual/sexual development, cell wall integrity and infectious growth in the rice blast fungus. PLoS ONE, 11, e0162243.
Liu C, Shen N, Zhang Q, Qin M, Cao T, Zhu S, Tang D, Han L. 2022. Magnaporthe oryzae transcription factor MoBZIP3 regulates appressorium turgor pressure formation during pathogenesis. International Journal of Molecular Sciences, 23, 881.
Liu N, Qi L, Huang M, Chen D, Yin C, Zhang Y, Wang X, Yuan G, Wang R, Yang J, Peng Y, Lu X. 2022. Comparative secretome analysis of magnaporthe oryzae identified proteins involved in virulence and cell wall integrity. Genomics Proteomics Bioinformatics, 20, 728–746.
Liu W, Xie S, Zhao X, Chen X, Zheng W, Lu G, Xu J, Wang Z. 2010. A homeobox gene is essential for conidiogenesis of the rice blast fungus Magnaporthe oryzae. Molecular Plant–Microbe Interactions, 23, 366–375.
Loibl M, Strahl S. 2013. Protein O-mannosylation: What we have learned from baker’s yeast. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1833, 2438–2446.
Lopez-Moya F, Martin-Urdiroz M, Oses-Ruiz M, Were V M, Fricker M D, Littlejohn G, Lopez-Llorca L V, Talbot N J. 2021. Chitosan inhibits septin-mediated plant infection by the rice blast fungus Magnaporthe oryzae in a protein kinase C and Nox1 NADPH oxidase-dependent manner. New Phytologist, 230, 1578–1593.
Mikolajczyk K, Kaczmarek R, Czerwinski M. 2020. How glycosylation affects glycosylation: The role of N-glycans in glycosyltransferase activity. Glycobiology, 30, 941–969.
Motteram J, Lovegrove A, Pirie E, Marsh J, Devonshire J, Van De Meene A, Hammond-Kosack K, Rudd J J. 2011. Aberrant protein N-glycosylation impacts upon infection-related growth transitions of the haploid plant-pathogenic fungus Mycosphaerella graminicola. Molecular Microbiology, 81, 415–433.
Pan Y, Pan R, Tan L, Zhang Z, Guo M. 2019. Pleiotropic roles of O-mannosyltransferase MoPmt4 in development and pathogenicity of Magnaporthe oryzae. Current Genetics, 65, 223–239.
Rodriguez-Pena J M, Garcia R, Nombela C, Arroyo J. 2010. The high-osmolarity glycerol (HOG) and cell wall integrity (CWI) signalling pathways interplay: A yeast dialogue between MAPK routes. Yeast, 27, 495–502.
Ryder L S, Dagdas Y F, Kershaw M J, Venkataraman C, Madzvamuse A, Yan X, Cruz-Mireles N, Soanes D M, Oses-Ruiz M, Styles V, Sklenar J, Menke F L H, Talbot N J. 2019. A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature, 574, 423–427.
Sharma C B, Knauer R, Lehle L. 2001. Biosynthesis of lipid-linked oligosaccharides in yeast: The ALG3 gene encodes the Dol-P-Man: Man5GlcNAc2-PP-Dol mannosyltransferase. Biological Chemistry, 382, 321–328.
Shi Z, Christian D, Leung H. 1998. Interactions between spore morphogenetic mutations affect cell types, sporulation, and pathogenesis in Magnaporthe grisea. Molecular Plant–Microbe Interactions, 11, 199–207.
Song J, Yin Y, Cheng W, Liu J, Hu S, Qiu L, Wang J. 2021. The N-mannosyltransferase gene BbAlg9 contributes to cell wall integrity, fungal development and the pathogenicity of Beauveria bassiana. Fungal Biology, 125, 776–784.
Sun L, Qian H, Wu M, Zhao W, Liu M, Wei Y, Zhu X, Li L, Lu J, Lin F, Liu X. 2022. A subunit of ESCRT-III, MoIst1, is involved in fungal development, pathogenicity, and autophagy in Magnaporthe oryzae. Frontiers in Plant Science, 13, 845139.
Tang W, Ru Y, Hong L, Zhu Q, Zuo R, Guo X, Wang J, Zhang H, Zheng X, Wang P, Zhang Z. 2015. System-wide characterization of bZIP transcription factor proteins involved in infection-related morphogenesis of Magnaporthe oryzae. Environmental Microbiology, 17, 1377–1396.
Thak E J, Lee S B, Xu-Vanpala S, Lee D J, Chung S Y, Bahn Y S, Oh D B, Shinohara M L, Kang H A. 2020. Core N-glycan structures are critical for the pathogenicity of Cryptococcus neoformans by modulating host cell death. mBio, 11, e00711-20.
Tham E, Eklund E A, Hammarsjo A, Bengtson P, Geiberger S, Lagerstedt-Robinson K, Malmgren H, Nilsson D, Grigelionis G, Conner P, Lindgren P, Lindstrand A, Wedell A, Albage M, Zielinska K, Nordgren A, Papadogiannakis N, Nishimura G, Grigelioniene G. 2016. A novel phenotype in N-glycosylation disorders: Gillessen-Kaesbach-Nishimura skeletal dysplasia due to pathogenic variants in ALG9. European Journal of Human Genetics, 24, 198–207.
Varki A. 2017. Biological roles of glycans. Glycobiology, 27, 3–49.
Wang J, Wang Q, Huang P, Qu Y, Huang Z, Wang H, Liu X, Lin F, Lu J. 2022. An appressorium membrane protein, Pams1, controls infection structure maturation and virulence via maintaining endosomal stability in the rice blast fungus. Frontiers in Plant Science, 13, 955254.
Wang Z, Zhang H, Liu C, Xing J, Chen X. 2018. A deubiquitinating enzyme Ubp14 is required for development, stress response, nutrient utilization, and pathogenesis of Magnaporthe oryzae. Frontiers in Microbiology, 9, 769.
Wu M, Yu Q, Tao T, Sun L, Qian H, Zhu X, Li L, Liang S, Lu J, Lin F, Liu X. 2022. Genome-wide analysis of AGC kinases reveals that MoFpk1 is required for development, lipid metabolism, and autophagy in hyperosmotic stress of the rice blast fungus Magnaporthe oryzae. mBio, 13, e0227922.
Yi M, Chi M H, Khang C H, Park S Y, Kang S, Valent B, Lee Y H. 2009. The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus Magnaporthe oryzae. Plant Cell, 21, 681–695.
Zacchi L F, Schulz B L. 2016. SWATH-MS glycoproteomics reveals consequences of defects in the glycosylation machinery. Molecular & Cellular Proteomics, 15, 2435–2447.
Zhang H, Zhao Q, Guo X, Guo M, Qi Z, Tang W, Dong Y, Ye W, Zheng X, Wang P, Zhang Z. 2014. Pleiotropic function of the putative zinc-finger protein MoMsn2 in Magnaporthe oryzae. Molecular & Cellular Proteomics, 27, 446–460.
Zhang S, Lin C, Zhou T, Zhang L H, Deng Y Z. 2020. Karyopherin MoKap119-mediated nuclear import of cyclin-dependent kinase regulator MoCks1 is essential for Magnaporthe oryzae pathogenicity. Cellular Microbiology, 22, e13114.
Zhou Z, Li G, Lin C, He C. 2009. Conidiophore stalk-less1 encodes a putative zinc-finger protein involved in the early stage of conidiation and mycelial infection in Magnaporthe oryzae. Molecular Plant–Microbe Interactions, 22, 402–410.
|