Journal of Integrative Agriculture ›› 2024, Vol. 23 ›› Issue (8): 2686-2702.DOI: 10.1016/j.jia.2023.06.028
收稿日期:
2023-02-23
接受日期:
2023-05-31
出版日期:
2024-08-20
发布日期:
2024-07-29
Wajjiha Batool1, 2, Justice Norvienyeku2, 3, Wei Yi1, Zonghua Wang2, Shihong Zhang1#, Lili Lin2#
Received:
2023-02-23
Accepted:
2023-05-31
Online:
2024-08-20
Published:
2024-07-29
About author:
Wajjiha Batool, E-mail: wajjiha@syau.edu.cn; #Correspondence Lili Lin, E-mail: lili_lin@fafu.edu.cn; Shihong Zhang, E-mail: zhangsh89@syau.edu.cn
Supported by:
This project is funded by the National Natural Science Foundation of China (32172364 to Shihong Zhang and 32272513 to Zonghua Wang) and Fujian Agriculture and Forestry University scholarship, China for Wajjiha Batool.
摘要:
稻瘟病是由半活体营养子囊真菌稻瘟病菌(Magnaporthe oryzae)引起的病害,对全球水稻的可持续生产构成重大威胁。研究表明,为了成功地侵染,稻瘟病菌会向水稻细胞分泌大量功能多样的蛋白质以利其致病。然而,这些效应蛋白进入宿主细胞后靶向何处及其如何促进病原菌致病的机制仍不清。我们研究发现稻瘟病菌一假定非典型分泌蛋白MoMtp正向调控稻瘟病菌分生孢子产生和附着胞的形成;MoMTP基因敲除突变体在侵染水稻叶片时会引起水稻超敏反应,表明MoMtp对稻瘟病菌的毒性至关重要;细胞壁完整性和氧化胁迫实验结果表明MoMtp可能是真菌维持细胞结构完整性必须的;MoMTP基因在侵染的所有阶段均上调表达,表明其可能在稻瘟病菌对宿主入侵和定殖过程中起调节作用。此外,通过烟草瞬时表达以及水稻叶鞘侵染实验发现,MoMtp-GFP定位于烟草及水稻细胞的线粒体中。综上所述,我们推论MoMtp蛋白可以促进稻瘟病菌分正常的分生孢子的形成和致病,并可能在侵入过程中干扰水稻线粒体的正常功能。
Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin. 非经典分泌蛋白(MoMtp)是稻瘟病菌产孢、应激稳态以及致病力所必需的[J]. Journal of Integrative Agriculture, 2024, 23(8): 2686-2702.
Wajjiha Batool, Justice Norvienyeku, Wei Yi, Zonghua Wang, Shihong Zhang, Lili Lin. Disruption of non-classically secreted protein (MoMtp) compromised conidiation, stress homeostasis, and pathogenesis of Magnaporthe oryzae[J]. Journal of Integrative Agriculture, 2024, 23(8): 2686-2702.
Aliyu S R, Lin L, Chen X, Abdul W, Lin Y, Otieno F J, Shabbir A, Batool W, Zhang Y, Tang W. 2019. Disruption of putative short-chain acyl-CoA dehydrogenases compromised free radical scavenging, conidiogenesis, and pathogenesis of Magnaporthe oryzae. Fungal Genetics and Biology, 127, 23–34. Andac A, Ozketen A C, Dagvadorj B, Akkaya M S. 2020. An effector of Puccinia striiformis f. sp. tritici targets chloroplasts with a novel and robust targeting signal. European Journal of Plant Pathology, 157, 751–765. Anderson P K, Cunningham A A, Patel N G, Morales F J, Epstein P R, Daszak P. 2004. Emerging infectious diseases of plants: Pathogen pollution, climate change and agrotechnology drivers. Trends in Ecology & Evolution, 19, 535–544. Anderson R G, Casady M S, Fee R A, Vaughan M M, Deb D, Fedkenheuer K, Huffaker A, Schmelz E A, Tyler B M, McDowell J M. 2012. Homologous RXLR effectors from Hyaloperonospora arabidopsidis and Phytophthora sojae suppress immunity in distantly related plants. The Plant Journal, 72, 882–893. Batool W, Liu C, Fan X, Zhang P, Hu Y, Wei Y, Zhang S H. 2022. AGC/AKT Protein kinase SCH9 is critical to pathogenic development and overwintering survival in Magnaporthe oryzae. Journal of Fungi, 8, 810–829. Batool W, Shabbir A, Lin L, Chen X, An Q, He X, Pan S, Chen S, Chen Q, Wang Z. 2021. Translation initiation factor eIF4E positively modulates conidiogenesis, appressorium formation, host invasion and stress homeostasis in the filamentous fungi Magnaporthe oryzae. Frontiers in Plant Science, 12, 1170–1184. Bendtsen J D, Jensen L J, Blom N, Von Heijne G, Brunak S. 2004. Feature-based prediction of non-classical and leaderless protein secretion. Protein Engineering Design and Selection, 17, 349–356. Bendtsen J D, Kiemer L, Fausboll A, Brunak S. 2005. Non-classical protein secretion in bacteria. BMC Microbiology, 5, 1–13. Bendtsen J D, Wooldridge K G. 2009. Non-classical secretion. Bacterial Secreted Proteins (Secretory Mechanisms and Role in Pathogenesis), 10, 224–235. Betts M F. 2007. Identification of new pathogenicity genes in Magnaporthe oryzae through the construction of an Agrobacterium tumefacines-mediated insertion mutant library. Ph D thesis, The University of Arizona, USA. pp. 1–24. Blümke A, Falter C, Herrfurth C, Sode B, Bode R, Schafer W, Feussner I, Voigt C A. 2014. Secreted fungal effector lipase releases free fatty acids to inhibit innate immunity-related callose formation during wheat head infection. Plant Physiology, 165, 346–358. Caillaud M C, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones J D G. 2016. Correction: A downy mildew effector attenuates salicylic acid-triggered immunity in Arabidopsis by interacting with the host mediator complex. PLoS Biology, 14, e1002408. Catlett N L, Lee B N, Yoder O C, Turgeon B G. 2003. Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genetics Reports, 50, 9–11. Chen T, Liu R, Dou M, Li M, Li M, Yin X, Liu G, Wang Y, Xu Y. 2020. Insight into function and subcellular localization of plasmopara viticola putative RxLR effectors. Frontiers in Microbiology, 11, 692–705. Cheng Y, Wu K, Yao J, Li S, Wang X, Huang L, Kang Z. 2017. PST ha5a23, a candidate effector from the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici, is involved in plant defense suppression and rust pathogenicity. Environmental Microbiology, 19, 1717–1729. Deatherage B L, Cookson B T. 2012. Membrane vesicle release in bacteria, eukaryotes, and archaea: A conserved yet underappreciated aspect of microbial life. Infection and Immunity, 80, 1948–1957. Deslandes L, Rivas S. 2012. Catch me if you can: Bacterial effectors and plant targets. Trends in Plant Science, 17, 644–655. Doehlemann G, Van Der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R. 2009. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathogen, 5, e1000290. Dong S, Yin W, Kong G, Yang X, Qutob D, Chen Q, Kale S D, Sui Y, Zhang Z, Dou D. 2011. Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS Pathogen, 7, e1002353. Dou X, Wang Q, Qi Z, Song W, Wang W, Guo M, Zhang H, Zhang Z, Wang P, Zheng X. 2011. MoVam7, a conserved SNARE involved in vacuole assembly, is required for growth, endocytosis, ROS accumulation, and pathogenesis of Magnaporthe oryzae. PLoS ONE, 6, e16439. Doyle E A, Lane A M, Sides J M, Mudgett M B, Monroe J D. 2007. An α-amylase (At4g25000) in Arabidopsis leaves is secreted and induced by biotic and abiotic stress, Plant, Cell & Environment. 30, 388–398. Du J, Wang Q, Zeng C, Zhou C, Wang X. 2022. A prophage-encoded non-classical secretory protein of “Candidatus Liberibacter asiaticus” induces a strong immune response in Nicotiana benthamiana and citrus. Molecular Plant Pathology, 23, 1022–1034. Du P, Zhang C, Zou X, Zhu Z, Yan H, Wuriyanghan H, Li W, Jain M, Munoz-Bodnar A, Zhang S, Gabriel D W. 2021. A secreted ‘Candidatus Liberibacter asiaticus’ peroxiredoxin simultaneously suppresses both localized and systemic innate immune responses in planta. Molecular Plant–Microbe Interactions, 31, 1312–1322. Ebner P, Luqman A, Reichert S, Hauf K, Popella P, Forchhammer K, Otto M, Gotz F. 2017. Non-classical protein excretion is boosted by PSMα-induced cell leakage. Cell Reports, 20, 1278–1286. Fan J, Du N, Li L, Li G B, Wang Y Q, Zhou Y F, Hu X H, Liu J, Zhao J Q, Li Y. 2019. A core effector UV_1261 promotes Ustilaginoidea virens infection via spatiotemporally suppressing plant defense. Phytopathology Research, 1, 1–12. Fang A, Gao H, Zhang N, Zheng X, Qiu S, Li Y, Zhou S, Cui F, Sun W. 2019. A novel effector gene SCRE2 contributes to full virulence of Ustilaginoidea virens to rice. Frontiers in Microbiology, 10, 845–860. Fang E G, Dean R A. 2000. Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Molecular Plant–Microbe Interactions, 13, 1214–1227. Feizi A, Gatto F, Uhlen M, Nielsen J. 2017. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match the processing demands of the secretome. NPJ Systems Biology and Applications, 3, 1–9. Fernandez J, Orth K. 2018. Rise of a cereal killer: The biology of Magnaporthe oryzae biotrophic growth. Trends in Microbiology, 26, 582–597. Gerlach R, Demel G, Konig H G, Gross U, Prehn J H M, Raabe A, Seifert V, Kogel D. 2006. Active secretion of S100B from astrocytes during metabolic stress. Neuroscience, 141, 1697–1701. Giraldo M C, Valent B. 2013. Filamentous plant pathogen effectors in action. Nature Reviews Microbiology, 11, 800–814. Goldstein A H, Mayfield S P, Danon A, Tibbot B K. 1989. Phosphate starvation inducible metabolism in Lycopersicon esculentum: III. Changes in protein secretion under nutrient stress. Plant Physiology, 91, 175–182. Gotz F, Yu W, Dube L, Prax M, Ebner P. 2015. Excretion of cytosolic proteins (ECP) in bacteria. International Journal of Medical Microbiology, 305, 230–237. Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Song W, Wang W, Wang Q, Lv R. 2010. The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Molecular Plant–Microbe Interactions, 23, 1053–1068. Han J, Wang X, Wang F, Zhao Z, Li G, Zhu X, Su J, Chen L. 2021. The fungal effector Avr-Pita suppresses innate immunity by increasing COX activity in rice mitochondria. Rice, 14, 1–11. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLoS Pathogen, 8, e1002684. Ishikawa K, Yamaguchi K, Sakamoto K, Yoshimura S, Inoue K, Tsuge S, Kojima C, Kawasaki T. 2014. Bacterial effector modulation of host E3 ligase activity suppresses PAMP-triggered immunity in rice. Nature Communications, 5, 1–11. Jain M, Munoz-Bodnar A, Zhang S, Gabriel D W. 2018. A secreted ‘Candidatus Liberibacter asiaticus’ peroxiredoxin simultaneously suppresses both localized and systemic innate immune responses in planta. Molecular Plant–Microbe Interactions, 31, 1312–1322. Johnson J D, Fleshner M. 2006. Releasing signals, secretory pathways, and immune function of endogenous extracellular heat shock protein 72. Journal of Leukocyte Biology, 79, 425–434. Keneni G, Bekele E, Imtiaz M, Dagne K. 2012. Genetic vulnerability of modern crop cultivars: Causes, mechanism, and remedies. International Journal of Plant Research, 2, 69–79. Khan M, Seto D, Subramaniam R, Desveaux D. 2018. Oh, the places they’ll go! A survey of phytopathogen effectors and their host targets. The Plant Journal, 93, 651–663. Khang C H, Berruyer R, Giraldo M C, Kankanala P, Park S Y, Czymmek K, Kang S, Valent B. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. The Plant Cell, 22, 1388–1403. Kim S, Kim C Y, Park S Y, Kim K T, Jeon J, Chung H, Choi G, Kwon S, Choi J, Jeon J. 2020. Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications, 11, 1–11. Kong L A, Li G T, Liu Y, Liu M G, Zhang S J, Yang J, Zhou X Y, Peng Y L, Xu J R. 2013. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Fungal Genetics and Biology, 56, 33–41. Kvitko B H, Park D H, Velásquez A C, Wei C F, Russell A B, Martin G B, Schneider D J, Collmer A. 2009. Deletions in the repertoire of Pseudomonas syringae pv. tomato DC3000 type III secretion effector genes reveal functional overlap among effectors. PLoS Pathogen, 5, e1000388. Lesage G, Bussey H. 2006. Cell wall assembly in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews, 70, 317–343. Lin L, Cao J, Du A, An Q, Chen X, Yuan S, Batool W, Shabbir A, Zhang D, Wang Z. 2021. eIF3k domain-containing protein regulates conidiogenesis, appressorium turgor, virulence, stress tolerance, and physiological and pathogenic development of Magnaporthe oryzae. Frontiers in Plant Science, 12, 748120. Lin L, Chen X, Shabbir A, Chen S, Chen X, Wang Z, Norvienyeku J. 2019. A putative N-BAR-domain protein is crucially required for the development of hyphae tip appressorium-like structure and its plant infection in Magnaporthe oryzae. Phytopathology Research, 1, 1–15. Liu Y, Lan X, Song S, Yin L, Dry I B, Qu J, Xiang J, Lu J. 2018. In planta functional analysis and subcellular localization of the oomycete pathogen Plasmopara viticola candidate RXLR effector repertoire. Frontiers in Plant Science, 9, 286–300. Malavazi I, Goldman G H, Brown N A. 2014. The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Briefings in Functional Genomics, 13, 456–470. Malhotra J D, Miao H, Zhang K, Wolfson A, Pennathur S, Pipe S W, Kaufman R J. 2008. Antioxidants reduce endoplasmic reticulum stress and improve protein secretion. Proceedings of the National Academy of Sciences of the United States of America, 105, 18525–18530. Mentlak T A, Kombrink A, Shinya T, Ryder L S, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma B P, Talbot N J. 2012. Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. The Plant Cell, 24, 322–335. Mustafa Z, Olmez F, Akkaya M. 2022. Inactivation of a candidate effector gene of Zymoseptoria tritici affects its sporulation. Molecular Biology Reports, 49, 11563–11571. Nickel W. 2003. The mystery of non-classical protein secretion: A current view on cargo proteins and potential export routes. European Journal of Biochemistry, 270, 2109–2119. Nickel W, Rabouille C. 2018. Unconventional protein secretion: Diversity and consensus. Seminars in Cell and Developmental Biology, 83, 1–2. Nie H, Zhang L, Zhuang H, Yang X, Qiu D, Zeng H. 2019. Secreted protein MoHrip2 is required for full virulence of Magnaporthe oryzae and modulation of rice immunity. Applied Microbiology and Biotechnology, 103, 6153–6167. Park C H, Chen S, Shirsekar G, Zhou B, Khang C H, Songkumarn P, Afzal A J, Ning Y, Wang R, Bellizzi M. 2012. The Magnaporthe oryzae effector AvrPiz-t targets the RING E3 ubiquitin ligase APIP6 to suppress pathogen-associated molecular pattern-triggered immunity in rice. The Plant Cell, 24, 4748–4762. Rabouille C. 2017. Pathways of unconventional protein secretion. Trends in Cell Biology, 27, 230–240. Robin G P, Kleemann J, Neumann U, Cabre L, Dallery J F, Lapalu N, O’Connell R. 2018. Subcellular localization screening of Colletotrichum higginsianum effector candidates identifies fungal proteins targeted to plant peroxisomes, Golgi bodies, and microtubules. Frontiers in Plant Science, 9, 562–579. Saklani B K, Arora K, Asthana R K, Sharma T R. 2019. In vitro expression, characterisation, and subcellular localisation of AvrPi54 protein, an effector of rice blast fungus Magnaporthe oryzae. Preprint.org, 1, doi: 10.20944/preprints201906.0031.v1. Sambrook J, Fritsch E F, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. Sambrook J, Fritsch E F, Maniatis T. 1990. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York. Sánchez-León E, Verdin J, Freitag M, Roberson R W, Bartnicki-Garcia S, Riquelme M. 2011. Traffic of chitin synthase 1 (CHS-1) to the Spitzenkorper and developing septa in hyphae of Neurospora crassa: Actin dependence and evidence of distinct microvesicle populations. Eukaryotic Cell, 10, 683–695. Schroeder L, Ikui A E. 2019. Tryptophan confers resistance to SDS-associated cell membrane stress in Saccharomyces cerevisiae. PLoS ONE, 14, e0199484. Shabbir A, Batool W, Yu D, Lin L, An Q, Xiaomin C, Guo H, Yuan S, Malota S, Wang Z. 2022. Magnaporthe oryzae chloroplast targeting Endo-β-1,4-Xylanase I MoXYL1A regulates conidiation, appressorium maturation and virulence of the rice blast fungus. Rice, 15, 1–16. Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn R A, Kamoun S. 2009. Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proceedings of the National Academy of Sciences of the United States of America, 106, 1654–1659. Sperschneider J, Catanzariti A M, DeBoer K, Petre B, Gardiner D M, Singh K B, Dodds P N, Taylor J M. 2017. LOCALIZER: Subcellular localization prediction of both plant and effector proteins in the plant cell. Scientific Reports, 7, 1–14. Sperschneider J, Dodds P N, Gardiner D M, Manners J M, Singh K B, Taylor J M. 2015. Advances and challenges in computational prediction of effectors from plant pathogenic fungi. PLoS Pathogen, 11, e1004806. Speth E B, Lee Y N, He S Y. 2007. Pathogen virulence factors as molecular probes of basic plant cellular functions. Current Opinion in Plant Biology, 10, 580–586. Timón-Gómez A, Nyvltova E, Abriata L A, Vila A J, Hosler J, Barrientos A. 2018. Mitochondrial cytochrome c oxidase biogenesis: Recent developments. Seminars in Cell & Developmental Biology, 76, 163–178. Tjalsma H, Antelmann H, Jongbloed J D H, Braun P G, Darmon E, Dorenbos R, Dubois J Y F, Westers H, Zanen G, Quax W J. 2004. Proteomics of protein secretion by Bacillus subtilis: Separating the “secrets” of the secretome. Microbiology and Molecular Biology Reviews, 68, 207–233. Tseng T T, Tyler B M, Setubal J C. 2009. Protein secretion systems in bacterial-host associations, and their description in the gene ontology. BMC Microbiology, 9, 1–9. Valent B, Khang C H. 2010. Recent advances in rice blast effector research. Current Opinion in Plant Biology, 13, 434–441. Voigt B, Schweder T, Sibbald M J J, Albrecht D, Ehrenreich A, Bernhardt J, Feesche J, Maurer K, Gottschalk G, van Dijl J M. 2006. The extracellular proteome of Bacillus licheniformis grown in different media and under different nutrient starvation conditions. Proteomics, 6, 268–281. Wang G, Xia Y, Song X, Ai L. 2016. Common non-classically secreted bacterial proteins with experimental evidence. Current Microbiology, 72, 102–111. Wang Q, Han C, Ferreira A O, Yu X, Ye W, Tripathy S, Kale S D, Gu B, Sheng Y, Sui Y. 2011. Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. The Plant Cell, 23, 2064–2086. Wang Y, Pang J, Zheng Y, Jiang P, Gong W, Chen X, Chen D. 2017. Genetic manipulation of the bifunctional gene, carRA, to enhance lycopene content in Blakeslea trispora. Biochemical Engineering Journal, 119, 27–33. Wilson R A, Talbot N J. 2009. Under pressure: Investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology, 7, 185–195. De Wit P J, Mehrabi R, Van Den Burg H A, Stergiopoulos I. 2009. Fungal effector proteins: Past, present, and future: Review. Molecular Plant Pathology, 10, 735–747. Wyatt T T, Wosten H A, Dijksterhuis J. 2013. Fungal spores for dispersion in space and time. Advances in Applied Microbiology, 85, 43–91. Xiao W, Loscalzo J. 2020. Metabolic responses to reductive stress. Antioxidants & Redox Signaling, 32, 1330–1347. Xie F, Hardy B. 2009. Accelerating Hybrid Rice Development. International Rice Research Institute, Metro Manila, Philippines. Xu G, Zhong X, Shi Y, Liu Z, Jiang N, Liu J, Ding B, Li Z, Kang H, Ning Y. 2020. A fungal effector targets a heat shock–dynamin protein complex to modulate mitochondrial dynamics and reduce plant immunity. Science Advances, 6, eabb7719. Yan W, Wang Y. 2018. Trick or treat: Microbial pathogens evolved apoplastic effectors modulating plant susceptibility to infection. Molecular Plant-Microbe Interactions, 31, 6–12. Yin L, An Y, Qu J, Li X, Zhang Y, Dry I, Wu H, Lu J. 2017. Genome sequence of Plasmopara viticola and insight into the pathogenic mechanism. Scientific Reports, 7, 1–12. Zhang H, Limphong P, Pieper J, Liu Q, Rodesch C K, Christians E, Benjamin I J. 2012. Glutathione-dependent reductive stress triggers mitochondrial oxidation and cytotoxicity. The FASEB Journal, 26, 1442–1451. Zhang J, Zhang W, Zou D, Chen G, Wan T, Zhang M, Cao X. 2002. Cloning and functional characterization of ACAD-9, a novel member of human acyl-CoA dehydrogenase family. Biochemical and Biophysical Research Communications, 297, 1033–1042. Zhang L, Lv R, Dou X, Qi Z, Hua C, Zhang H, Wang Z, Zheng X, Zhang Z. 2011. The function of MoGlk1 in integration of glucose and ammonium utilization in Magnaporthe oryzae. PLoS ONE, 6, e22809. Zhang N, Yang J, Fang A, Wang J, Li D, Li Y, Wang S, Cui F, Yu J, Liu Y. 2020. The essential effector SCRE1 in Ustilaginoidea virens suppresses rice immunity via a small peptide region. Molecular Plant Pathology, 21, 445–459. Zhang S, Xu J R. 2014. Effectors and effector delivery in Magnaporthe oryzae. PLoS Pathogens, 10, e1003826. Zhang X, He D, Zhao Y, Cheng X, Zhao W, Taylor I A, Yang J, Liu J, Peng Y. 2018. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. The Plant Journal, 96, 133–146. Zhang Y, Zhang K, Fang A, Han Y, Yang J, Xue M, Bao J, Hu D, Zhou B, Sun X. 2014. Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications, 5, 1–12. Zhao L, Chen J, Sun J, Zhang D. 2017. Multimer recognition and secretion by the non-classical secretion pathway in Bacillus subtilis. Scientific Reports, 7, 1–18. Zhou W, Parent L J, Wills J W, Resh M D. 1994. Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. Journal of Virology, 68, 2556–2569. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||