Adams S R, Pearson S, Hadley P. 2001. Improving quantitative flowering models through a better understanding of the phases of photoperiod sensitivity. Journal of Experimental Botany, 52, 655–662.
Akyuz F A, Kandel H, Morlock D. 2017. Developing a growing degree day model for North Dakota and Northern Minnesota soybean. Agricultural and Forest Meteorology, 239, 134–140.
Bai T, Tao W, Zhang N, Chen Y, Mercatoris B. 2020. Growth simulation and yield prediction for perennial jujube fruit tree by integrating age into the WOFOST model. Journal of Integrative Agriculture, 19, 721–734.
Behar O, Khellaf A, Mohammedi K. 2015. Comparison of solar radiation models and their validation under Algerian climate - The case of direct irradiance. Energy Conversion and Management, 98, 236–251.
Birch C J, Hammer G L, Rickert K G. 1998. Temperature and photoperiod sensitivity of development in five cultivars of maize (Zea mays L.) from emergence to tassel initiation. Field Crops Research, 55, 93–107.
Bonhomme R, Derieux M, Edmeades G O. 1994. Flowering of diverse maize cultivars in relation to temperature and photoperiod in multilocation field trials. Crop Science, 34, 156–164.
Borchert R, Renner S S, Calle Z, Navarrete D, Tye A, Gautier L, Spichiger R, von Hildebrand P. 2005. Photoperiodic induction of synchronous flowering near the equator. Nature, 433, 627–629.
Brisson N, Gary C, Justes E, Roche R, Mary B, Ripoche D, Zimmer D, Sierra J, Bertuzzi P, Bussière F, Cabidoche Y M, Celliera P, Debaekea P, Gaudillèrea J P, Hénault C, Maraux F, Seguina B, Sinoquet H. 2003. An overview of the crop model STICS. European Journal of Agronomy, 18, 309–332.
Bu T T, Lu S J, Wang K, Dong L D, Li S L, Xie Q G, Xu X D, Cheng Q, Chen L Y, Fang C, Li H Y, Liu B H, Weller J L, Kong F J. 2021. A critical role of the soybean evening complex in the control of photoperiod sensitivity and adaptation. Proceedings of the National Academy of Sciences of the United States of America, 118, e2010241118.
Confalonieri R, Bregaglio S, Rosenmund A S, Acutis M, Savin I. 2011. A model for simulating the height of rice plants. European Journal of Agronomy, 34, 20–25.
Despotovic M, Nedic V, Despotovic D, Cvetanovic S. 2015. Review and statistical analysis of different global solar radiation sunshine models. Renewable and Sustainable Energy Reviews, 52, 1869–1880.
Van Diepen C V, Wolf J, Van Keulen H, Rappoldt C. 1989. WOFOST: A simulation model of crop production. Soil Use and Management, 5, 16–24.
Dong X, Guan L, Zhang P H, Liu X L, Li S J, Fu Z J, Qi Z Y, Qiu Z G, Jin C, Huang S B, Yang H. 2021. Responses of maize with different growth periods to heat stress around flowering and early grain filling. Agricultural and Forest Meteorology, 303, 108378.
Ellis R H, Summerfield R J, Edmeades G O, Roberts E H. 1992. Photoperiod, temperature, and the interval from sowing to tassel initiation in diverse cultivars of maize. Crop Science, 32, 1225–1232.
Fan J L, Wu L F, Zhang F C, Cai H J, Ma X, Bai H. 2019. Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China. Renewable and Sustainable Energy Reviews, 105, 168–186.
Flynn D F B, Wolkovich E M. 2018. Temperature and photoperiod drive spring phenology across all species in a temperate forest community. New Phytologist, 219, 1353–1362.
Ghamghami M, Ghahreman N, Irannejad P, Ghorbani K. 2019. Comparison of data mining and GDD-based models in discrimination of maize phenology. International Journal of Plant Production, 13, 11–22.
Girijesh G K, Kumarswamy A S, Sreedhar S, Kumar M D, Vageesh T S, Rajashekarappa K S. 2011. Heat unit utilization of kharif maize in transitional zone of Karnataka. Journal of Agrometeorology, 13, 43–45.
Gueymard C A. 2014. A review of validation methodologies and statistical performance indexes for modeled solar radiation data: Towards a better bankability of solar projects. Renewable and Sustainable Energy Reviews, 39, 1024–1034.
He H Y, Hu Q, Li R, Pan X B, Huang B X, He Q J. 2020. Regional gap in maize production, climate and resource utilization in China. Field Crops Research, 254, 107830.
van Ittersum M K, Leffelaar P A, van Keulen H, Kropff M J, Bastiaans L, Goudriaan J. 2003. On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18, 201–234.
Jiang T, Liu J, Gao Y J, Sun Z, Chen S, Yao N, Ma H J, Feng H, Yu Q, He J Q. 2020. Simulation of plant height of winter wheat under soil water stress using modified growth functions. Agricultural Water Management, 232, 106066.
Johal N, Kaur J, Kushwah A, Singh S. 2020. Comparative agroclimatic indices of desi and kabuli chickpea genotypes under irrigated and rainfed conditions. Journal of Food Legumes, 33, 77–81.
Jones J W, Hoogenboom G, Porter C H, Boote K J, Batchelor W D, Hunt L A, Wilkens P W, Singh U, Gijsmana, A J, Ritchie J T. 2003. The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.
Keating B A, Carberry P S, Hammer G L, Probert M E, Robertson M J, Holzworth D, Huth N I, Hargreaves J N G, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes J P, Silburn M, Wang E, Brown S, Bristow K L, Asseng S, Chapman S, et al. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18, 267–288.
Kiniry J R, Ritchie J T, Musser R L, Flint E P, Iwig W C. 1983. The photoperiod sensitive interval in maize. Agronomy Journal, 75, 687–690.
Kukal M S, Irmak S. 2018. US agro-climate in 20th century: Growing degree days, first and last frost, growing season length, and impacts on crop yields. Scientific Reports, 8, 1–14.
Kumudini S, Andrade F, Boote K, Brown G, Dzotsi K, Edmeades G, Gocken T, Goodwin M, Halter A, Hammer G. 2014. Predicting maize phenology: Intercomparison of functions for developmental response to temperature. Agronomy Journal, 106, 2087–2097.
Li Z P, Song M D, Feng H. 2017. Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield. Transactions of the Chinese Society of Agricultural Engineering, 33, 195–202. (in Chinese)
Lizaso J I, Batchelor W D, Boote K J, Westgate M E. 2005. Development of a leaf-level canopy assimilation model for CERES-Maize. Agronomy Journal, 97, 722–733.
Majumder D, Kingra P K, Kukal S S. 2016. Canopy temperature and heat use efficiency of spring maize under modified soil microenvironment. Annals of Agricultural Research, 37, 225–235.
Mishra A K, Ines A V M, Das N N. 2015. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study. Journal of Hydrology, 526, 15–29.
Mitscherlich E A. 1919. Das Gesetz des Pflanzenwachstums. Landwirtschaftliche Jahrbücher, 53, 167–182. (in German)
Pullanagari R R, Dehghan-Shoar M, Yule I J, Bhatia N. 2021. Field spectroscopy of canopy nitrogen concentration in temperate grasslands using a convolutional neural network. Remote Sensing of Environment, 257, 112353.
Rodrigues N, Dufresnes C. 2017. Using conventional F-statistics to study unconventional sex-chromosome differentiation. PeerJ, 5, e3207.
Sandhu R, Irmak S. 2020. Performance assessment of Hybrid-Maize model for rainfed, limited and full irrigation conditions. Agricultural Water Management, 242, 106402.
Satish J V, Ajithkumar B, John L C, Vysakh A. 2017. Heat units requirement for different rice varieties in the central zone of kerala. Contemporary Research in India, 7, 1–6.
Sepaskhah A R, Fahandezh-Saadi S, Zand-Parsa S. 2011. Logistic model application for prediction of maize yield under water and nitrogen management. Agricultural Water Management, 99, 51–57.
Seymour N P, Edwards D G, Thompson J P. 2019. A dual rescaled Mitscherlich model of the simultaneous savings in phosphorus and zinc fertilizer from arbuscular mycorrhizal fungal colonization of linseed (Linum usitatissimum L.). Plant and Soil, 440, 97–118.
Singh A K, Tripathi P, Adhar S. 2008. Heat unit requirements for phenophases of wheat genotypes as influenced by sowing dates. Journal of Agrometeorology, 10, 209–212.
Steduto P, Hsiao T C, Raes D, Fereres E. 2009. AquaCrop - The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal, 101, 426–437.
Stöckle C O, Donatelli M, Nelson R. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy, 18, 289–307.
Subrahmaniyan K, Veeramani P, Harisudan C. 2018. Heat accumulation and soil properties as affected by transparent plastic mulch in Blackgram (Vigna mungo) doubled cropped with groundnut (Arachis hypogaea) in sequence under rainfed conditions in Tamil Nadu, India. Field Crops Research, 219, 43–54.
Subrahmaniyan K, Veeramani P, Zhou W. 2021. Does heat accumulation alter crop phenology, fibre yield and fibre properties of sunnhemp (Crotalaria juncea L.) genotypes with changing seasons? Journal of Integrative Agriculture, 20, 2395–2409.
Todorovic M, Albrizio R, Zivotic L, Saab M T A, Stöckle C, Steduto P. 2009. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agronomy Journal, 101, 509–521.
Tollenaar M, Hunter R B. 1983. A photoperiod and temperature sensitive period for leaf number of maize. Crop Science, 23, 457–460.
Tolley S, Yang Y, Mohammadi M. 2020. High-throughput phenotyping identifies plant growth differences under well-watered and drought treatments. Journal of Integrative Agriculture, 19, 2429–2438.
Wang K, Su L J, Wang Q J. 2021. Cotton growth model under drip irrigation with film mulching: A case study of Xinjiang, China. Agronomy Journal, 113, 2417–2436.
Wang X L. 1986. How to use logistic equation in dynamic simulation of dry matter production. Chinese Journal of Agrometeorology, 7, 14–19. (in Chinese)
Wang Z K, Zhao X N, Wu P T, Gao Y, Yang Q, Shen Y Y. 2017. Border row effects on light interception in wheat/maize strip intercropping systems. Field Crops Research, 214, 1–13.
Ware G O, Ohki K, Moon L C. 1982. The Mitscherlich plant growth model for determining critical nutrient deficiency levels. Agronomy Journal, 74, 88–91.
Wardhani W S, Kusumastuti P. 2014. Describing the height growth of corn using logistic and Gompertz model. AGRIVITA. Journal of Agricultural Science, 35, 237–241.
Warrington I J, Kanemasu E T. 1983. Corn growth response to temperature and photoperiod. I. Seedling emergence, tassel initiation, and anthesis. Agronomy Journal, 75, 749–754.
Williams J R, Jones C A, Kiniry J R, Spanel D A. 1989. The EPIC crop growth model. Transactions of the ASAE, 32, 497–511.
Wu L, Peng Y, Fan J, Wang Y, Huang G. 2021. A novel kernel extreme learning machine model coupled with K-means clustering and firefly algorithm for estimating monthly reference evapotranspiration in parallel computation. Agricultural Water Management, 245, 106624.
De Wit A, Boogaard H, Fumagalli D, Janssen S, Knapen R, van Kraalingen D, Supita I, van der Wijngaart R, van Diepen K. 2019. 25 years of the WOFOST cropping systems model. Agricultural Systems, 168, 154–167.
Yin S Y, Li P C, Xu Y, Liu J, Yang T T, Wei J, Xu S H, Yu J J, Fang H M, Xue L, Hao D R, Yang Z F, Xu C W. 2020. Genetic and genomic analysis of the seed-filling process in maize based on a logistic model. Heredity, 124, 122–134.
Zhang Y L, Liu P, Zhang X X, Zheng Q, Chen M, Ge F, Li Z L, Sun W T, Guan Z G, Liang T H, Zheng Y, Tan X L, Zou C Y, Peng H W, Pan G T, Shen Y. 2018. Multi-locus genome-wide association study reveals the genetic architecture of stalk lodging resistance-related traits in maize. Frontiers in Plant Science, 9, 611.
Zhao Y, Mao X, Shukla M K. 2020. A modified SWAP model for soil water and heat dynamics and seed-maize growth under film mulching. Agricultural and Forest Meteorology, 292, 108127.
Zheng J, Fan J L, Zhang F C, Zhuang Q L. 2021a. Evapotranspiration partitioning and water productivity of rainfed maize under contrasting mulching conditions in Northwest China. Agricultural Water Management, 243, 106473.
Zheng J, Fan J L, Zou Y, Zhang F C, Guo J J, Yan S C, Zhuang Q L, Cui N B, Guo L. 2021b. Interactive effects of mulching practice and nitrogen rate on grain yield, water productivity, fertilizer use efficiency and greenhouse gas emissions of rainfed summer maize in northwest China. Agricultural Water Management, 248, 106778.
|