Journal of Integrative Agriculture ›› 2022, Vol. 21 ›› Issue (9): 2465-2476.DOI: 10.1016/j.jia.2022.07.013
所属专题: 玉米耕作栽培合辑Maize Physiology · Biochemistry · Cultivation · Tillage
• • 下一篇
收稿日期:
2021-06-09
接受日期:
2021-11-10
出版日期:
2022-09-01
发布日期:
2022-08-05
LI Teng*, ZHANG Xue-peng*, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng
Received:
2021-06-09
Accepted:
2021-11-10
Online:
2022-09-01
Published:
2022-08-05
About author:
Correspondence SUI Peng, E-mail: suipeng@cau.edu.cn
* These authors contributed equally to this study.
Supported by:
摘要:
不利的生长条件会造成玉米产量的降低。当前,生育期内的高温胁迫是玉米生产过程中所面临的重要威胁之一。玉米在生育期内的所有生长阶段都可能遭受连续或者间断的高温胁迫。为了应对不同生育期阶段内高温胁迫对玉米生产的影响,需要进一步综述、对比不同生长阶段内高温胁迫造成的产量损失,以及潜在的机制。为此,本文将玉米生长周期划分为七个生长阶段,即发芽和幼苗期、拔节期、营养生长后期、开花期、滞后期和有效灌浆期,以及灌浆后期。本文介绍的主要内容是不同阶段高温胁迫引起的产量损失和潜在生理变化。同时,还比较和讨论了高温胁迫对不同生长阶段生理过程影响的共性和差异。最后,提出了一个理论框架来描述不同阶段内高温胁迫对产量及产量构成要素的主要影响,这也将为制定缓解高温胁迫造成的玉米产量损失的策略提供帮助。
. 生育期内不同阶段高温胁迫下玉米的产量损失:综述[J]. Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
LI Teng, ZHANG Xue-peng, LIU Qing, LIU Jin, CHEN Yuan-quan, SUI Peng. Yield penalty of maize (Zea mays L.) under heat stress in different growth stages: A review[J]. Journal of Integrative Agriculture, 2022, 21(9): 2465-2476.
Abeledo L G, Savin R, Slafer G A. 2020. Maize senescence under contrasting source–sink ratios during the grain filling period. Environmental and Experimental Botany, 180, 104263. Andrade F H, Vega C, Uhart S, Cirilo A, Cantarero M, Valentinuz O. 1999. Kernel number determination in maize. Crop Science, 39, 453–459. Baduapraku B, Hunter R B, Tollenaar M. 1983. Effect of temperature during grain filling on whole plant and grain yield in maize (Zea mays L.). Canadian Journal of Plant Science, 63, 357–363. Barnabas B, Jager K, Feher A. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell & Environment, 31, 11–38. Bassetti P, Westgate M E. 1993a. Emergence, elongation, and senescence of maize silks. Crop Science, 33, 271–275. Bassetti P, Westgate M E. 1993b. Senescence and receptivity of maize silks. Crop Science, 33, 275–278. Begcy K, Nosenko T, Zhou L Z, Fragner L, Weckwerth W, Dresselhaus T. 2019. Male sterility in maize after transient heat stress during the tetrad stage of pollen development. Plant Physiology, 181, 683–700. Bheemanahalli R, Sunoj V S J, Saripalli G, Prasad P V V, Balyan H S, Gupta P K, Grant N, Gill K S, Jagadish S V K. 2019. Quantifying the impact of heat stress on pollen germination, seed set, and grain filling in spring wheat. Crop Science, 59, 684–696. Boehlein S K, Liu P, Webster A, Ribeiro C, Suzuki M, Wu S, Guan J C, Stewart J D, Tracy W F, Settles A M, McCarty D R, Koch K E, Hannah L C, Hennen-Bierwagen T A, Myers A M. 2019. Effects of long-term exposure to elevated temperature on Zea mays endosperm development during grain fill. Plant Journal, 99, 23–40. Borrás L, Vitantonio-Mazzini L N. 2018. Maize reproductive development and kernel set under limited plant growth environments. Journal of Experimental Botany, 69, 3235–3243. Borrás L, Westgate M E, Astini J P, Echarte L. 2007. Coupling time to silking with plant growth rate in maize. Field Crops Research, 102, 73–85. Cairns J E, Sonder K, Zaidi P H, Verhulst N, Mahuku G, Babu R. 2012. Maize production in a changing climate: Impacts, adaptation and mitigation strategies. Advance in Agronomy, 114, 1–58. Chen G, Chen H, Shi K, Raza M A, Bawa G, Sun X, Pu T, Yong T, Liu W, Liu J, Du J, Yang F, Yang W, Wang X. 2020. Heterogeneous light conditions reduce the assimilate translocation towards maize ears. Plants (Basel), 9, 987. Cheng W, Sakai H, Yagi K, Hasegawa T. 2010. Combined effects of elevated [CO2] and high night temperature on carbon assimilation, nitrogen absorption, and the allocations of C and N by rice (Oryza sativa L.). Agricultural and Forest Meteorology, 150, 1174–1181. Cicchino M, Edreira J I R, Otegui M E. 2010a. Heat stress during late vegetative growth of maize: Effects on phenology and assessment of optimum temperature. Crop Science, 50, 1431–1437. Cicchino M, Edreira J I R, Uribelarrea M, Otegui M E. 2010b. Heat stress in field-grown maize: Response of physiological determinants of grain yield. Crop Science, 50, 1438–1448. Commuri P, Jones R. 1999. Ultrastructural characterization of maize (Zea mays L.) kernels exposed to high temperature durinng endosperm cell division. Plant Cell and Environment, 22, 375–385. Commuri P, Jones R. 2001. High temperatures during endosperm cell division in maize: A genotypic comparison under in vitro and field conditions. Crop Science, 41, 1122–1130. Crafts-Brandner S J, Salvucci M E. 2002. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiology, 129, 1773–1780. Daynard T B, Tanner J W, Duncan W G. 1971. Duration of grain filling period and its relation to grain yield in corn corn, Zea mays L. Crop Science, 11, 45–47. Djanaguiraman M, Perumal R, Jagadish S V K, Ciampitti I A, Welti R, Prasad P V V. 2018. Sensitivity of sorghum pollen and pistil to high-temperature stress. Plant Cell Environment, 41, 1065–1082. Edreira J I R, Budakli Carpici E, Sammarro D, Otegui M E. 2011. Heat stress effects around flowering on kernel set of temperate and tropical maize hybrids. Field Crops Research, 123, 62–73. Edreira J I R, Otegui M E. 2012. Heat stress in temperate and tropical maize hybrids: Differences in crop growth, biomass partitioning and reserves use. Field Crops Research, 130, 87–98. Essemine J, Ammar S, Bouzid S. 2010. Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences, 10, 565–572. Farooq M, Bramley H, Palta J A, Siddique K H M. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 491–507. Firon N, Shaked R, Peet M M, Pharr D M, Zamski E, Rosenfeld K, Althan L, Pressman E. 2006. Pollen grains of heat tolerant tomato cultivars retain higher carbohydrate concentration under heat stress conditions. Scientia Horticulturae, 109, 212–217. Gabaldón-Leal C, Webber H, Otegui M E, Slafer G A, Ordóñez R A, Gaiser T, Lorite I J, Ruiz-Ramos M, Ewert F. 2016. Modelling the impact of heat stress on maize yield formation. Field Crops Research, 198, 226–237. Gebbing T, H.Schnyder, Kühbauch W. 1999. The utilization of pre anthesis reserves in grain filling of wheat. Assessment by steady-state 13CO2/12CO2 labelling. Plant Cell Environment, 22, 851–858. Gonzalez V H, Lee E A, Lewis Lukens L, Swanton C J. 2019. The relationship between floret number and plant dry matter accumulation varies with early season stress in maize (Zea mays L.). Field Crops Research, 238, 129–138. Hawkins E, Fricker T E, Challinor A J, Ferro C A, Ho C K, Osborne T M. 2013. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s. Global Change Biology, 19, 937–947. Hou X, Yuanyuan W, Shoubing H, Xin D, Hongbin T, Pu W. 2020. Effect of high temperature during flowering on pollen development and seed setting rate of maize (Zea mays L.). Journal of China Agricultural University, 25, 10–16. (in Chinese) Idikut L. 2013. The effects of light, temperature and salinity on seed germination of three maize forms. Greener Journal of Agricultural Sciences, 3, 246–253. Iloh A C, Omatta G, Ogbadu G H, Onyenekwe P C. 2014. Effects of elevated temperature on seed germination and seedling growth on three cereal crops in Nigeria. Scientific Research and Essays, 9, 806–813. Johnson D R, Tanner J W. 1972. Calculation of the rate and duration of grain filling in corn (Zea mays L.). Crop Science, 12, 485–489. Jones R, Ouattar S, Crookston R. 1984. Thermal environment during endosperm cell division and grain filling in maize: Effects on kernel growth and development in vitro. Crop Science, 24, 133–137. Jones R, Roessler J, Ouattar S. 1985. Thermal environment during endosperm cell division in maize: Effects on number of endosperm cells and starch granules. Crop Science, 25, 830–834. Jones R, Schreiber B, Roessler J A. 1996. Kernel sink capacity in maize: Genotypic and maternal regulation. Crop Science, 36, 301–306. Karim M A, Fracheboud Y, Stamp P. 1999. Photosynthetic activity of developing leaves of Zea mays is less affected by heat stress than that of developed leaves. Physiologia Plantarum, 105, 685–693. Karim M A, Fracheboud Y, Stamp P. 2000. Effect of high temperature on seedling growth and photosynthesis of tropical maize genotypes. Journal of Agronomy and Crop Science, 184, 217–223. Li Y T, Xu W W, Ren B Z, Zhao B, Zhang J, Liu P, Zhang Z S. 2020. High temperature reduces photosynthesis in maize leaves by damaging chloroplast ultrastructure and photosystem II. Journal of Agronomy and Crop Science, 206, 548–564. Liu X, Wang X, Wang X, Gao J, Luo N, Meng Q, Wang P. 2020. Dissecting the critical stage in the response of maize kernel set to individual and combined drought and heat stress around flowering. Environmental and Experimental Botany, 179, 104213. Lizaso J I, Ruiz-Ramos M, Rodríguez L, Gabaldon-Leal C, Oliveira J A, Lorite I J, Sánchez D, García E, Rodríguez A. 2018. Impact of high temperatures in maize: Phenology and yield components. Field Crops Research, 216, 129–140. Lobell D B, Asner G P. 2003. Climate and management contributions to recent trends in U.S. agricultural yields. Science, 299, 1032–1032. Lobell D B, Bänziger M, Magorokosho C, Vivek B. 2011a. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Climate Change, 1, 42–45. Lobell D B, Schlenker W, Costa-Roberts J. 2011b. Climate trends and global crop production since 1980. Science, 333, 616–620. Lohani N, Singh M B, Bhalla P L. 2020. High temperature susceptibility of sexual reproduction in crop plants. Journal of Experimental Botany, 71, 555–568. Lu L T J, Jane J J l, Peter L, Keeling B, Singletary G W. 1996. Maize starch fine structures affected by ear developmental temperature. Carbohydrate Research, 282, 157–170. Ma X, Su Z, Ma H. 2020. Molecular genetic analyses of abiotic stress responses during plant reproductive development. Journal of Experimental Botany, 71, 2870–2885. Mackay B. 1985. Soil moisture effects on root growth and phosphorus uptake by corn. Agronomy Journal, 77, 818–823. Mathur S, Agrawal D, Jajoo A. 2014. Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology (B: Biology), 137, 116–126. Mayer L I, Cirilo A G, Maddonni G A. 2019. Kernel hardness-related traits in response to heat stress during the grain-filling period of maize crops. Crop Science, 59, 318–332. Mayer L I, Edreira J I R, Maddonni G A. 2014. Oil yield components of maize crops exposed to heat stress during early and late grain-filling stages. Crop Science, 54, 2236–2250. Mayer L I, Savin R, Maddonni G A. 2016. Heat stress during grain filling modifies kernel protein composition in field-grown maize. Crop Science, 56, 1890–1903. Meehl G A, Tebaldi C. 2004. More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305, 994–997. Mijani S, Nasrabadi S E, Zarghani H, Abadi M G. 2013. Seed germination and early growth responses of hyssop, sweet basil and oregano to temperature levels. Notulae Scientia Biologicae, 5, 462–467. Neiff N, Ploschuk E L, Valentinuz O R, Andrade F H. 2019. Physiological responses and post-stress recovery in field-grown maize exposed to high temperatures at flowering. Australian Journal of Crop Science, 13, 2053–2061. Neiff N, Trachsel S, Valentinuz O R, Balbi C N, Andrade F H. 2016. High temperatures around flowering in maize: Effects on photosynthesis and grain yield in three genotypes. Crop Science, 56, 2702–2712. Nguetta A S P, Cross H Z. 1997. Correlated responses in ear and plant traits in maize synthetics selected for R-nj color expression. Crop Science, 37, 739–744. Omoarelojie L O, Kulkarni M G, Finnie J F, Pospisil T, Strnad M, Van Staden J. 2020. Synthetic strigolactone (rac-GR24) alleviates the adverse effects of heat stress on seed germination and photosystem II function in lupine seedlings. Plant Physiology and Biochemistry, 155, 965–979. Ordóñez R A, Savin R, Cossani C M, Slafer G A. 2015. Yield response to heat stress as affected by nitrogen availability in maize. Field Crops Research, 183, 184–203. Paul M J, Fyoer C H. 2001. Sink regulation of photosynthesis. Journal of Experimental Botany, 52, 1383–1400. Phan T T T, Ishibashi Y, Miyazaki M, Tran H T, Okamura K, Tanaka S, Nakamura J, Yuasa T, Iwaya-Inoue M. 2013. High temperature-induced repression of the rice sucrose transporter (OsSUT1) and starch synthesis-related genes in sink and source organs at milky ripening stage causes chalky grains. Journal of Agronmy of Crop Science, 199, 178–188. Ping Z, Guanying C, Peng G, Ya G, Lei Z, Shasha Z, Pu W. 2017. Effects of high temperature during grain filling period on superior and inferior kernels’ development of different heat sensitive maize varieties. Scientia Agricultura Sinica, 50, 2061–2070. (in Chinese) Porter J R, Gawith M. 1999. Temperature and growth and development of wheat: A review. European Journal of Agronomy, 10, 23–26. Prasad P V V, Boote K J, Allen L H. 2006. Adverse high temperature effects on pollen viability, seed-set, seed yield and harvest index of grain-sorghum [Sorghum bicolor (L.) Moench] are more severe at elevated carbon dioxide due to higher tissue temperatures. Agricultural and Forest Meteorology, 139, 237–251. Rahman M S, Wilson J H, Aitken V. 1977. Determination of spikelet number in wheat. II. Effect of varying light level on ear development. Australian Journal of Agricultural Research, 26, 575–561. Rosmaina, Utami D, Aryanti E, Zulfahmi. 2021. Impact of heat stress on germination and seedling growth of chili pepper (Capsicum annuum L.). IOP Conference Seriesm (Earth and Environmental Science). Surakarta, Indonesia. 637, 012032. Schussler J, Westgate M E. 1995. Assimilate flux determines kernel set at low water potential in maize. Crop Science, 35, 1074–1080. Siebers M H, Slattery R A, Yendrek C R, Locke A M, Drag D, Ainsworth E A, Bernacchi C J, Ort D R. 2017. Simulated heat waves during maize reproductive stages alter reproductive growth but have no lasting effect when applied during vegetative stages. Agriculture, Ecosystems & Environment, 240, 162–170. Slafer G A, Savin R. 2018. Can N management affect the magnitude of yield loss due to heat waves in wheat and maize? Current Opinion in Plant Biology, 45, 276–283. De Storme N, Geelen D. 2014. The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms. Plant Cell Environment, 37, 1–18. Sunoj V S J, Shroyer K J, Jagadish S V K, Prasad P V V. 2016. Diurnal temperature amplitude alters physiological and growth response of maize (Zea mays L.) during the vegetative stage. Environmental and Experimental Botany, 130, 113–121. Suwa R, Hakata H, Hara H, El-Shemy H A, Adu-Gyamfi J J, Nguyen N T, Kanai S, Lightfoot D A, Mohapatra P K, Fujita K. 2010. High temperature effects on photosynthate partitioning and sugar metabolism during ear expansion in maize (Zea mays L.) genotypes. Plant Physiology and Biochemistry, 48, 124–130. Tao Z Q, Chen Y Q, Li C, Zou J X, Yan P, Yuan S F, Wu X, Sui P. 2016. The causes and impacts for heat stress in spring maize during grain filling in the North China Plain - A review. Journal of Integrative Agriculture, 15, 2677–2687. Tian B, Zhu J, Nie Y, Xu C, Meng Q, Wang P. 2019. Mitigating heat and chilling stress by adjusting the sowing date of maize in the North China Plain. Journal of Agronomy and Crop Science, 205, 77–87. Tsou C H, Ping C C, Tseng C M, Yen H J, Fu Y L, You T R, Walden D B. 2015. Anther development of maize (Zea mays) and longstamen rice (Oryza longistaminata) revealed by cryo-SEM, with foci on locular dehydration and pollen arrangement. Plant Reproduction, 28, 47–60. Wahid A, Gelani S, Ashraf M, Foolad M. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223. Wang X, Cai J, Liu F, Jin M, Yu H, Jiang D, Wollenweber B, Dai T, Cao W. 2012. Pre-anthesis high temperature acclimation alleviates the negative effects of post-anthesis heat stress on stem stored carbohydrates remobilization and grain starch accumulation in wheat. Journal of Cereal Science, 55, 331–336. Wang Y, Sheng D, Zhang P, Dong X, Yan Y, Hou X, Wang P, Huang S. 2021. High temperature sensitivity of kernel formation in different short periods around silking in maize. Environmental and Experimental Botany, 183, 104343. Wang Y, Tao H, Tian B, Sheng D, Xu C, Zhou H, Huang S, Wang P. 2019. Flowering dynamics, pollen, and pistil contribution to grain yield in response to high temperature during maize flowering. Environmental and Experimental Botany, 158, 80–88. Xu Y J, Gu D J, Zhang B B, Zhang H, Wang Z Q, Yang J C. 2013. Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agronomica Sinica, 39, 1452–1460. (in Chinese) Yan P, Chen Y Q, Sui P, Zhang X P. 2018. Effect of maize plant morphology on the formation of apical kernels at different sowing dates and under different plant densities. Field Crops Research, 223, 83–62. Yang H, Gu X, Ding M, Lu W, Lu D. 2018. Heat stress during grain filling affects activities of enzymes involved in grain protein and starch synthesis in waxy maize. Scientific Reports, 8, 15665. Yang H, Huang T, Ding M, Lu D, Lu W. 2017. High temperature during grain filling impacts on leaf senescence in waxy maize. Agronomy Journal, 109, 906–916. Yu K K, Sun N N, Zhan J, Gu H J, Liu G, Pan L W, Liu T X. 2017. Effect of high temperature stress on physiological characteristics of tassel and ear in different maize varieties. Journal of Maize Science, 25, 84–91. (in Chinese) Zhang B R. 2003. Studies on effect of high temperature on yield and quality and regulation in maize (Zea mays L.). Ph D thesis, Shandong Agricultural University, Shandong. pp. 1–99. (in Chinese) Zhang C X, Feng B H, Chen T T, Fu W M, Li H B, Li G Y, Jin Q Y, Tao L X, Fu G F. 2018. Heat stress-reduced kernel weight in rice at anthesis is associated with impaired source–sink relationship and sugars allocation. Environmental and Experimental Botany, 155, 718–733. Zhang X P. 2019. Mechanism of changing sowing date of maize sole cropping system to resist and avoid the heat stress in Heilonggang Region. Ph D thesis, China Agricultural University, China. pp. 1–73. (in Chinese) Zhao L X, Zhang P, Wang R N, Wang P, Tao H B. 2014. Effect of high temperature after flowering on growth and development of superior and inferior maize kernels. Acta Agronomica Sinica, 40, 1839–1845. (in Chinese) Zhao W Q, Xu W Z, Yang L Y, Liu Y, Zhou Z G, Wang Y H. 2021. Different response of cotton leaves to heat stress is closely related to the night starch degradation. Acta Agronomica Sinica, 47, 1680–1689. (in Chinese) Zhu P, Zhuang Q, Archontoulis S V, Bernacchi C, Muller C. 2019. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration. Global Change Biology, 25, 2470–2484. Zinn K E, Tunc-Ozdemir M, Harper J F. 2010. Temperature stress and plant sexual reproduction: uncovering the weakest links. Journal of Experimental Botany, 61, 1959–1968. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||