Journal of Integrative Agriculture ›› 2022, Vol. 21 ›› Issue (1): 139-152.DOI: 10.1016/S2095-3119(20)63499-2

• • 上一篇    下一篇

基于iTRAQ的水稻纹枯病菌侵染响应蛋白鉴定与分析

  

  • 收稿日期:2020-08-18 接受日期:2021-11-10 出版日期:2022-01-01 发布日期:2022-01-01
  • 通讯作者: This study was financially supported by grants from the National Key Research and Development Program of China (2016YFD0100601), the National Natural Science Foundation of China (31701057 and 31672013), the Natural Science Foundation of Jiangsu Province, China (BK20170487), the Fok Ying Tung Education Foundation, China (151026), the China Postdoctoral Science Foundation (2017M620227), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJD210001), and 2018 Annual Key Project of Scientific Research in Yangzhou Polytechnic College, China (2018ZR07).

iTRAQ-based quantitative proteomics analysis of defense responses triggered by the pathogen Rhizoctonia solani infection in rice

FENG Zhi-ming1, 2, 5, GAO Peng1, ZHAO Jian-hua1, WANG Guang-da1, ZHANG Hui-min1, CAO Wen-lei1, XUE Xiang4, ZHANG Ya-fang1, 2, Ma Yu-yin4, Hua Rong5, CHEN Zong-xiang1, 2, CHEN Xi-jun1, HU Ke-ming1, 2, ZUO Shi-min1, 2, 3   

  1. 1 Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College, Yangzhou University, Yangzhou 225009, P.R.China
    2 Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, P.R.China
    3 Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China/Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, P.R.China
    4 Yangzhou Polytechnic College, Yangzhou 225000, P.R.China
    5 Jiangsu Hongqi Seed Stock Co., Ltd., Taizhou 225311, P.R.China
  • Received:2020-08-18 Accepted:2021-11-10 Online:2022-01-01 Published:2022-01-01
  • About author:FENG Zhi-ming, Tel: +86-514-87972136, E-mail: fengzm@yzu.edu.cn; Correspondence ZUO Shi-min, Tel: +86-514-87972136, E-mail: smzuo@yzu.edu.cn
  • Supported by:
    This study was financially supported by grants from the National Key Research and Development Program of China (2016YFD0100601), the National Natural Science Foundation of China (31701057 and 31672013), the Natural Science Foundation of Jiangsu Province, China  (BK20170487), the Fok Ying Tung Education Foundation, China (151026), the China Postdoctoral Science Foundation (2017M620227), a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (PAPD), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (19KJD210001), and 2018 Annual Key Project of Scientific Research in Yangzhou Polytechnic College, China (2018ZR07).

摘要:

死体营养型病原菌立枯丝核菌是造成各种作物产量损失的破坏性真菌之一。在水稻上,该病原可侵染水稻叶鞘叶片引起纹枯病的发生,造成严重的产量损失和品质下降。目前,人们对植物如何应对该病原菌入侵的防御机制还知之甚少为了探索水稻响应纹枯病菌侵染的分子机制,本研究纹枯病水稻品种YSBR1为材料,采用蛋白质组学同位素相对标记与绝对定量技术(iTRAQ),筛选和分析纹枯病菌侵染前后的差异积累蛋白differentially accumulated proteins, DAPs)通过比较分析,总计鉴定到319DAPs,其中161个上调积累、158个下调积累。GO和KEGG功能富集分析结果显示,这些DAPs涵盖了多种功能途径,其中部分位于细胞氧化还原稳态糖酵解过程、三羧酸循环、苯丙烷生物合成、光合作用、叶绿素生物合成过程病程相关蛋白这七个信号途径。进一步采用荧光定量PCR方法,对从7个信号途径中各随机选择的2DAPs基因进行转录水平验证,结果不仅证实本研究中筛选到的DAPs具有较高的可靠性,而且进一步证明这些途径确实参与水稻对纹枯病菌的侵染响应。结合这7个信号途径中的相关基因或蛋白的功能信息,认为其在水稻抵御纹枯菌侵染过程中具有重要作用另外,我们发现所有参与光合作用和叶绿素生物合成途径的DAPs及部分参与苯丙烷生物合成途径的DAPs在受到纹枯病菌侵染后均显著下调积累暗示纹枯病菌侵染时可能优先攻击水稻的光合系统加速细胞死亡,进而通过抑制水稻体内苯丙烷的生物合成等信号削弱寄主防御反应,帮助其快速侵染扩展研究结果为进一步解析水稻-纹枯病菌间的互作机制提供更多有价值的数据信息和新的视角

Abstract: The soil-borne necrotrophic fungus Rhizoctonia solani is one of destructive fungi causing severe yield losses in various important crops.  However, the host defense mechanisms against the invasion of this pathogen are poorly understood.  In this study, we employed an iTRAQ-based quantitative proteomic approach to investigate host proteins responsive to R. solani using the resistant rice cultivar YSBR1.  As a whole, we identified 319 differentially accumulated proteins (DAPs) after inoculation of rice plants with R. solani.  Functional categorization analysis indicates that these DAPs cover a broad range of functions.  Notably, a substantial portion of the DAPs are involved in cell redox homeostasis, carbohydrate metabolism, and phenylpropanoid biosynthesis, or belong to pathogenesis-related proteins, indicating that these processes/proteins play important roles in host defense against R. solani.  Interestingly, all of the DAPs involved in photosynthesis and chlorophyll biosynthetic processes, and part of the DAPs involved in phenylpropanoid biosynthesis, show reduced accumulation after R. solani infection, suggesting that R. solani probably inhibits host photosynthetic system and phenylpropanoid biosynthesis to facilitate infection and colonization.  In conclusion, our results provide both valuable resources and new insights into the molecular mechanisms underlying rice and R. solani interaction.

Key words: rice sheath blight ,  Rhizoctonia solani ,  proteomic ,   defense response