Bailey T L, Mikael B, Buske F A, Martin F, Grant C E, Luca C, Ren J Y, Li W W, William S. 2009. Noble, MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37, 202–208.
Chen Y, Fan X, Song W, Zhang Y, Xu G. 2012. Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnology Journal, 10, 139–149.
Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature, 435, 441–445.
Du H, Wu N, Fu J, Wang S P, Li X H, Xiao J H, Xiong L Z. 2012. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany, 63, 6467–6480.
Flister L, Galushko V. 2016. The impact of wheat market liberalization on the seed industry’s innovative capacity: An assessment of Brazil’s experience. Agricultural and Food Economics, 4, 11.
Guo T, Chen K, Dong N Q, Ye W W, Shan J X, Lin H X. 2020. Tillering and small grain 1 dominates the tryptophan aminotransferase family required for local auxin biosynthesis in rice. Journal of Integrative Plant Biology, 62, 581–600.
IWGSC (International Wheat Genome Sequencing Consortium), IWGSC RefSeq Principal Investigators, Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, IWGSC whole-genome assembly principal investigators, Pozniak C J, Stein N, Choulet F, Distelfeld A, Eversole K, Poland J, Rogers J, Ronen G, Sharpe A G, Pozniak C, Ronen G, et al. 2018. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191.
Jiang M, Hu H, Kai J, Traw M B, Yang S, Zhang X. 2019. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes. Plant Molecular Biology, 100, 467–479.
Lee J, Park J J, Kim S L, Yim J, An G. 2007. Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Molecular Biology, 65, 487–499.
Ling H Q, Ma B, Shi X, Liu H, Dong L, Sun H, Cao Y, Gao Q, Zheng S, Li Y, Yu Y, Du H, Qi M, Li Y, Lu H, Yu H, Cui Y, Wang N, Chen C, Wu H, et al. 2018. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature, 557, 424–428.
Liu K Y, Cao J, Yu K H, Liu X Y, Gao Y J, Chen Q, Zhang W J, Peng H R, Du J K, Xin M M, Hu Z R, Guo W L, Rossi V, Ni Z F, Sun Q X, Yao Y Y. 2019. Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiology, 181, 179–194.
Liu X, Yang C Y, Miao R, Zhou C L, Cao P H, Lan J, Zhu X J, Mou C L, Huang Y S, Liu S J, Tian Y L, Nguyen T L, Jiang L, Wan J M. 2018. DS1/OsEMF1 interacts with OsARF11 to control rice architecture by regulation of brassinosteroid signaling. Rice, 11, 46.
Luo J, Zhou J J, Zhang J Z. 2018. Aux/IAA gene family in plants: Molecular structure, regulation, and function. International Journal of Molecular Sciences, 19, 259.
Luo M C, Gu Y Q, Puiu D, Wang H, Twardziok S O, Deal K R, Huo N, Zhu T, Wang L, Wang Y, McGuire P E, Liu S, Long H, Ramasamy R K, Rodriguez J C, Van S L, Yuan L, Wang Z, Xia Z, Xiao L, et al. 2017. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature, 551, 498–502.
Luo X Y, Zheng J S, Huang R Y, Huang Y M, Wang H C, Jiang L R, Fang X J. 2016. Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Reports, 35, 2423–2433.
Moreno M A, Harper L C, Krueger R W, Dellaporta S L, Freeling M. 1997. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes & Development, 11, 616–628.
Ramírez-González R H, Cory A T, Florio T, Concia L, Juery C, Schoonbeek H, Steuernagel B, Xiang D, Ridout C J, Chalhoub B, Mayer K F X, Benhamed M, Latrasse D, Bendahmane A, IWGSC (International Wheat Genome Sequencing Consortium), Wulff B B H, Appels R, Tiwari V, Datla R, Choulet F, et al. 2018. The transcriptional landscape of polyploid wheat. Science, 361, eaar6089.
Salehin M, Bagchi R, Estelle M. 2015. SCFTIR1/AFB-based auxin perception: Mechanism and role in plant growth and development. The Plant Cell, 27, 9–19.
Singh K, Singh J, Jindal S, Sidhu G, Dhaliwal A, Gill K. 2019. Structural and functional evolution of an auxin efflux carrier PIN1 and its functional characterization in common wheat. Functional & Integrative Genomics, 19, 29–41.
Song Y, Xu Z F. 2013. Ectopic overexpression of an AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA) gene OsIAA4 in rice induces morphological changes and reduces responsiveness to auxin. International Journal of Molecular Sciences, 14, 13645–13656.
Wang R, Estelle M. 2014. Diversity and specificity: Auxin perception and signaling through the TIR1/AFB pathway. Current Opinion in Plant Biology, 21, 51–58.
Winkler M, Niemeyer M, Hellmuth A, Janitza P, Christ G, Samodelov S L, Wilde V, Majovsky P, Trujillo M, Zurbriggen M D, Hoehenwarter W, Quint M, Villalobos L I A C. 2017. Variation in auxin sensing guides AUX/IAA transcriptional repressor ubiquitylation and destruction. Nature Communications, 8, 15706.
Wu J, Zhang Z, Zhang Q, Liu Y, Zhu B, Cao J, Li Z, Han L, Jia J, Zhao G, Sun X. 2015. Generation of wheat transcription factor FOX rice lines and systematic screening for salt and osmotic stress tolerance. PLoS ONE, 10, e0132314.
Zhang S, Wang S, Xu Y, Yu C, Shen C, Qian Q, Geisler M, Jiang D A, Qi Y. 2015. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environment, 38, 638–654.
Zhao G, Zou C, Li K, Wang K, Li T, Gao L, Zhang X, Wang H, Yang Z, Liu X, Jiang W, Mao L, Kong X, Jiao Y, Jia J. 2017. The Aegilops tauschii genome reveals multiple impacts of transposons. Nature Plants, 3, 946–955.
Zhao S Q, Xiang J J, Xue H W. 2013. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Molecular Plant, 6, 174–187.
|