Atzberger C. 2004. Object-based retrieval of biophysical canopyvariables using artificial neural nets and radiative transfermodels. Remote Sensing of Environment, 93, 53-67Atzberger C, Richter K. 2012. Spatially constrained inversionof radiative transfer models for improved LAI mapping fromfuture Sentinel-2 imagery. Remote Sensing of Environment,120, 208-218Bacour C, Baret F, Béal D, Weiss M, Pavageau K. 2006. Neuralnetwork estimation of LAI, fAPAR, fCover and LAI×Cab,from top of canopy MERIS reflectance data: Principles andvalidation. Remote Sensing of Environment, 105, 313-325Baret F, Clevers J, Steven M. 1995. The robustness ofcanopy gap fraction estimates from red and near-infraredreflectances: A comparison of approaches. Remote Sensingof Environment, 54, 141-151Ben-Dor E, Patkin K, Banin A, Karnieli A. 2002. Mapping ofseveral soil properties using DAIS-7915 hyperspectralscanner data - a case study over clayey soils in Israel.International Journal of Remote Sensing, 23, 1043-1062Broge N H, Leblanc E. 2000. Comparing prediction powerand stability of broadband and hyperspectral vegetationindices for estimation of green leaf area index and canopychlorophyll density. Remote Sensing of Environment, 76,156-172Chen J M, Black T. 1992. Defining leaf area index for non-flatleaves. Plant, Cell & Environment, 15, 421-429Chen J M, Cihlar J. 1996. Retrieving leaf area index of borealconifer forests using Landsat TM images. Remote Sensingof Environment, 55, 153-162Chen J M, Menges C H, Leblanc S G. 2005. Global mappingof foliage clumping index using multi-angular satellite data.Remote Sensing of Environment, 97, 447-457Cohen W B, Maiersperger T K, Gower S T, Turner D P. 2003.An improved strategy for regression of biophysical variablesand Landsat ETM+ data. Remote Sensing of Environment,84, 561-571Combal B, Baret F, Weiss M. 2002. Improving canopyvariables estimation from remote sensing data by exploitingancillary information. Case study on sugar beet canopies.Agronomie, 22, 205-215Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C. 2008.Inversion of a radiative transfer model for estimatingvegetation LAI and chlorophyll in a heterogeneousgrassland. Remote Sensing of Environment, 112, 2592-2604Dorigo W, Richter R, Baret F, Bamler R, Wagner W. 2009.Enhanced automated canopy characterization fromhyperspectral data by a novel two step radiative transfermodel inversion approach. Remote Sensing, 1, 1139-1170Duan S B, Li Z L, Wu H, Tang B H, Ma L, Zhao E, Li C. 2014.Inversion of the PROSAIL model to estimate leaf area indexof maize, potato, and sunflower fields from unmanned aerialvehicle hyperspectral data. International Journal of AppliedEarth Observation and Geoinformation, 26, 12-20Durbha S S, King R L, Younan N H. 2007. Support vectormachines regression for retrieval of leaf area index frommultiangle imaging spectroradiometer. Remote Sensing ofEnvironment, 107, 348-361Duveiller G, Weiss M, Baret F, Defourny P. 2011. Retrievingwheat Green Area Index during the growing seasonfrom optical time series measurements based on neuralnetwork radiative transfer inversion. Remote Sensing ofEnvironment, 115, 887-896Eklundh L, Hall K, Eriksson H, Ardö J, Pilesjö P. 2003.Investigating the use of Landsat thematic mapper data forestimation of forest leaf area index in southern Sweden.Canadian Journal of Remote Sensing, 29, 349-362Eklundh L, Harrie L, Kuusk A. 2001. Investigating relationshipsbetween Landsat ETM+ sensor data and leaf area index ina boreal conifer forest. Remote Sensing of Environment,78, 239-251Eriksson H M, Eklundh L, Kuusk A, Nilson T. 2006. Impactof understory vegetation on forest canopy reflectanceand remotely sensed LAI estimates. Remote Sensing ofEnvironment, 103, 408-418Fang H, Liang S. 2005. A hybrid inversion method for mappingleaf area index from MODIS data: Experiments andapplication to broadleaf and needleleaf canopies. RemoteSensing of Environment, 94, 405-424Fang H, Liang S, Hoogenboom G. 2011. Integration of MODISLAI and vegetation index products with the CSM-CERESMaizemodel for corn yield estimation. International Journalof Remote Sensing, 32, 1039-1065Fang H, Liang S, Kuusk A. 2003. Retrieving leaf area indexusing a genetic algorithm with a canopy radiative transfermodel. Remote Sensing of Environment, 85, 257-270Fan W J, Gai Y Y, Xu X R, Yan B Y. 2012. The spatialscaling effect of the discrete-canopy effective leaf areaindex retrieved by remote sensing. Science China (EarthSciences), 43, 280-286 (in Chinese)Fan W J, Xu X R, Liu X C, Yan B Y, Cui Y K. 2010a. Accurate LAIretrieval method based on PROBA/CHRIS data. Hydrologyand Earth System Sciences, 14, 1499-1507Fan W J, Yan B, Xu X. 2010b. Crop area and leaf areaindex simultaneous retrieval based on spatial scalingtransformation. Science China Earth Sciences, 53,1709-1716Feng R, Zhang Y, Yu W. 2013. Analysis of the relationshipbetween the spectral characteristics of maize canopy andleaf area index under drought stress. Acta Ecologica Sinica,33, 301-307Fernandes R, Miller J R, Hu B, Rubinstein I G. 2002. A multiscaleapproach to mapping effective Leaf Area Index inBoreal Picea mariana stands using high spatial resolutionCASI imagery. International Journal of Remote Sensing,23, 3547-3568Filella I, Penuelas J. 1994. The red edge position and shapeas indicators of plant chlorophyll content, biomass andhydric status. International Journal of Remote Sensing,15, 1459-1470Franke J, Roberts D A, Halligan K, Menz G. 2009. Hierarchicalmultiple endmember spectral mixture analysis (MESMA)of hyperspectral imagery for urban environments. RemoteSensing of Environment, 113, 1712-1723Gao B C. 1993. An operational method for estimating signal tonoise ratios from data acquired with imaging spectrometers.Remote Sensing of Environment, 43, 23-33Gao B C, Montes M J, Davis C O, Goetz A F. 2009. Atmosphericcorrection algorithms for hyperspectral remote sensingdata of land and ocean. Remote Sensing of Environment,113, S17-S24.Garrigues S, Allard D, Baret F, Weiss M. 2006. Influence oflandscape spatial heterogeneity on the non-linear estimationof leaf area index from moderate spatial resolution remotesensing data. Remote Sensing of Environment, 105,286-298Gastellu-Etchegorry J P, Martin E, Gascon F. 2004. DART:A 3D model for simulating satellite images and studyingsurface radiation budget. International Journal of RemoteSensing, 25, 73-96Gonsamo A, Pellikka P. 2012. The sensitivity based estimationof leaf area index from spectral vegetation indices. ISPRSJournal of Photogrammetry and Remote Sensing, 70,15-25Guillen-Climent M L, Zarco-Tejada P J, Berni J A J, North PR J, Villalobos F J. 2012. Mapping radiation interceptionin row-structured orchards using 3D simulation and highresolutionairborne imagery acquired from a UAV. PrecisionAgriculture, 13, 473-500Haboudane D. 2004. Hyperspectral vegetation indices andnovel algorithms for predicting green LAI of crop canopies:Modeling and validation in the context of precisionagriculture. Remote Sensing of Environment, 90, 337-352Hernández-Clemente R, Navarro-Cerrillo R M, Zarco-TejadaP J. 2014. Deriving predictive relationships of carotenoidcontent at the canopy level in a conifer forest usinghyperspectral imagery and model simulation. IEEETransactions on Geoscience and Remote Sensing, 52, 5206-5217Herrmann I, Pimstein A, Karnieli A, Cohen Y, Alchanatis V,Bonfil D J. 2011. LAI assessment of wheat and potatocrops by VENμS and Sentinel-2 bands. Remote Sensingof Environment, 115, 2141-2151Houborg R, Anderson M, Daughtry C. 2009. Utility of animage-based canopy reflectance modeling tool for remoteestimation of LAI and leaf chlorophyll content at the fieldscale. Remote Sensing of Environment, 113, 259-274Houborg R, Boegh E. 2008. Mapping leaf chlorophyll and leafarea index using inverse and forward canopy reflectancemodeling and SPOT reflectance data. Remote Sensing ofEnvironment, 112, 186-202Houborg R, Soegaard H, Boegh E. 2007. Combining vegetationindex and model inversion methods for the extraction of keyvegetation biophysical parameters using Terra and AquaMODIS reflectance data. Remote Sensing of Environment,106, 39-58Huang J, Zeng Y, Kuusk A, Wu B, Dong L, Mao K, Chen J.2011a. Inverting a forest canopy reflectance model toretrieve the overstorey and understorey leaf area index forforest stands. International Journal of Remote Sensing,32, 7591-7611Huang J, Zeng Y, Wu W, Mao K, Xu J, Su W. 2011b. Estimationof overstory and understory leaf area index by combininghyperion and panchromatic QuickBird data using NeuralNetwork method. Sensor Letters, 9, 946-973Huemmrich K F. 2001. The GeoSail model: a simple additionto the SAIL model to describe discontinuous canopyreflectance. Remote Sensing of Environment, 75, 423-431Jacquemoud S, Baret F, Andrieu B, Danson F, Jaggard K.1995. Extraction of vegetation biophysical parameters byinversion of the PROSPECT+SAIL models on sugar beetcanopy reflectance data. Application to TM and AVIRISsensors. Remote Sensing of Environment, 52, 163-172Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P J, Asner G P, François C, Ustin S L. 2009.PROSPECT+SAIL models: A review of use for vegetationcharacterization. Remote Sensing of Environment, 113,S56-S66.Jensen J R. 2009. Remote Sensing of the Environment: AnEarth Resource Perspective. Pearson Education India,India.Johnson L F, Billow C R. 1996. Spectrometry estimation of totalnitrogen concentration in Douglas-fir foliage. InternationalJournal of Remote Sensing, 17, 489–500.Kimes D, Knyazikhin Y, Privette J, Abuelgasim A, Gao F. 2000.Inversion methods for physically-based models. RemoteSensing Reviews, 18, 381-439Kuusk A. 1991. The hotspot effect in plant canopy reflectance.In: Photon-vegetation Interactions: Applications in OpticalRemote Sensing and Plant Physiology. Springer-Verlag,New York, USA.Kuusk A. 1994. A multispectral canopy reflectance model.Remote Sensing of Environment, 50, 75-82Kuusk A. 1995a. A fast, invertible canopy reflectance model.Remote Sensing of Environment, 51, 342-350Kuusk A. 1995b. A Markov chain model of canopy reflectance.Agricultural and Forest Meteorology, 76, 221-263Kuusk A. 2001. A two-layer canopy reflectance model. Journalof Quantitative Spectroscopy and Radiative Transfer, 71,1-9Laurent V C E, Schaepman M E, Verhoef W, WeyermannJ, Chávez R O. 2014. Bayesian object-based estimationof LAI and chlorophyll from a simulated Sentinel-2 topof-atmosphere radiance image Remote Sensing ofEnvironment, 140, 318-329Lee K S, Cohen W B, Kennedy R E, Maiersperger T K, GowerS T. 2004. Hyperspectral versus multispectral data forestimating leaf area index in four different biomes. RemoteSensing of Environment, 91, 508-520Li X, Gao F, Wang J, Strahler A. 2001. A priori knowledgeaccumulation and its application to linear BRDF modelinversion. Journal of Geophysical Research, 106, 11925-11935Li X, Gao F, Wang J, Zhu Q. 1997. Uncertainty and sensitivitymatrix of parameters in inversion of physical BRDF model.Journal of Remote Sensing, 1, 5-14 (in Chinese)Li X, Strahler A H. 1986. Geometric-optical bidirectionalreflectance modeling of a conifer forest canopy. IEEETransactions on Geoscience and Remote Sensing, 6,906-919Li X H, Song X N, Leng P. 2011. A quantitative method forgrassland LAI inversion based on CHIRS/PROBA data.Remote Sensing for Land & Resources, 3, 60-66Lu D, Song K, Wang Z, Du J, Zeng L, Lei X. 2010. Application ofwavelet transform on hyperspectral reflectance for soybeanlai estimation in the songnen plain, China. In: Proceedings of2010 IEEE International Geoscience and Remote SensingSymposium. Honolulu, USA. pp. 2139-2142Myneni R B, Maggion S, Iaquinta J, Privette J L, Gobron N, PintyB, Kimes D S, Verstraete M M, Williams D L. 1995. Opticalremote sensing of vegetation: Modeling, caveats, andalgorithms. Remote Sensing of Environment, 51, 169-188Nilson T, Kuusk A. 1989. Reflectance model for thehomogeneous plant canopy and its inversion. RemoteSensing of Environment, 27, 157-167Othman H, Qian S E. 2006. Noise reduction of hyperspectralimagery using hybrid spatial-spectral derivative-domainwavelet shrinkage. IEEE Transactions on Geoscience andRemote Sensing, 44, 397-408Perkins T, Adler-Golden S, Matthew M W, Berk A, Bernstein L S,Lee J, Fox M. 2012. Speed and accuracy improvements inFLAASH atmospheric correction of hyperspectral imagery.Optical Engineering, 51, 1371-1379Pinty B, Lavergne T, Voßbeck M, Kaminski T, Aussedat O,Giering R, Gobron N, Taberner M, Verstraete M M, WidlowskiJ L. 2007. Retrieving surface parameters for climate modelsfrom Moderate Resolution Imaging Spectroradiometer(MODIS)-Multiangle Imaging Spectroradiometer (MISR)albedo products. Journal of Geophysical Research(Atmospheres (1984-2012)), 112, 185–194Pu R, Gong P. 2004. Wavelet transform applied to EO-1hyperspectral data for forest LAI and crown closuremapping. Remote Sensing of Environment, 91, 212-224Pu R, Gong P, Biging G S, Larrieu M R. 2003. Extraction of rededge optical parameters from Hyperion data for estimationof forest leaf area index. IEEE Transactions on Geoscienceand Remote Sensing, 41, 916-921Pu R, Gong P, Yu Q. 2008. Comparative analysis of EO-1 ALIand hyperion, and landsat ETM+ Data for mapping forestcrown closure and leaf area index. Sensors, 8, 3744-3766Qin W, Gerstl S AW. 2000. 3-D scene modeling of semidesertvegetation cover and its radiation regime. Remote Sensingof Environment, 74, 145-162Qu Y, Wang J, Wan H, Li X, Zhou G. 2008. A Bayesian networkalgorithm for retrieving the characterization of land surfacevegetation. Remote Sensing of Environment, 112, 613-622Richter K, Atzberger C, Vuolo F, Weihs P, D’Urso G. 2009.Experimental assessment of the Sentinel-2 band setting forRTM-based LAI retrieval of sugar beet and maize. CanadianJournal of Remote Sensing, 35, 230-247Ross J. 1981. The Radiation Regime and Architecture of PlantStands. Springer, New York, USA.Saltelli A, Tarantola S, Chan K P S. 1999. A quantitative modelindependentmethod for global sensitivity analysis of modeloutput. Technmetrics, 41, 39-56Schlerf M, Atzberger C 2006. Inversion of a forest reflectancemodel to estimate structural canopy variables fromhyperspectral remote sensing data. Remote Sensing ofEnvironment, 100, 281-294Schlerf M, Atzberger C, Hill J. 2005. Remote sensing of forestbiophysical variables using HyMap imaging spectrometerdata. Remote Sensing of Environment, 95, 177-194Si Y, Schlerf M, Zurita-Milla R, Skidmore A, Wang T. 2012.Mapping spatio-temporal variation of grassland quantityand quality using MERIS data and the PROSAIL model.Remote Sensing of Environment, 121, 415-425Spanner M, Lee J, Miller J, McCreight R, Freemantle J, RunyonJ, Gong P. 1994. Remote sensing of seasonal leaf areaindex across the Oregon transect. Ecological Applications,4, 258-271Tillack A, Clasen A, Kleinschmit B, Förster M. 2014. Estimationof the seasonal leaf area index in an alluvial forest usinghigh-resolution satellite-based vegetation indices. RemoteSensing of Environment, 141, 52-63Trombetti M, Riano D, Rubio M, Cheng Y, Ustin S. 2008.Multi-temporal vegetation canopy water content retrievaland interpretation using artificial neural networks for thecontinental USA. Remote Sensing of Environment, 112,203-215Verhoef W. 1984. Light scattering by leaf layers with applicationto canopy reflectance modeling: The SAIL model. RemoteSensing of Environment, 16, 125-141Verhoef W, Bach H. 2007. Coupled soil-leaf-canopy andatmosphere radiative transfer modeling to simulatehyperspectral multi-angular surface reflectance and TOAradiance data. Remote Sensing of Environment, 109,166−182.Verrelst J, Romijn E, Kooistra L. 2012. Mapping vegetationdensity in a heterogeneous river floodplain ecosystemusing pointable CHRIS/PROBA data. Remote Sensing, 4,2866-2889Vohland M, Jarmer T. 2008. Estimating structural and biochemicalparameters for grassland from spectroradiometer databy radiative transfer modelling (PROSPECT+SAIL).International Journal of Remote Sensing, 29, 191-209Vohland M, Mader S, Dorigo W. 2010. Applying differentinversion techniques to retrieve stand variables of summerbarley with PROSPECT+SAIL. International Journal ofApplied Earth Observation and Geoinformation, 12, 71-80Wang D, Wang J, Liang S. 2010. Retrieving crop leaf area indexby assimilation of MODIS data into a crop growth model.Science China Earth Sciences, 53, 721-730Weiss M, Baret F, Leroy M, Hautecoeur O, Bacour C, PrevotL. 2002. Validation of neural net techniques to estimatecanopy biophysical variables from remote sensing data.Agronomie, 22, 547-553Weiss M, Baret F, Myneni R, Pragnère A, Knyazikhin Y. 2000.Investigation of a model inversion technique to estimatecanopy biophysical variables from spectral and directionalreflectance data. Agronomie, 20, 3-22Widlowski J L, Taberner M, Pinty B, Bruniquel-Pinel V, DisneyM, Fernandes R, Gastellu-Etchegorry J P, Gobron N, KuuskA, Lavergne T, Leblanc S, Lewis P E, Martin E, MõttusM, North P R J, Qin W, Robustelli M, Rochdi N, RuilobaR, Soler C, et al. 2007. Third radiation transfer modelintercomparison (RAMI) exercise: Documenting progressin canopy reflectance models. Journal of GeophysicalResearch (Atmospheres (1984-2012)), 112, 139–155Winter E M, Winter M E. 1999. Autonomous hyperspectralendmember determination methods. In: Proceedings ofthe International Society for Optical Engineering, 3870,Florence, Italy. pp. 150-158Wu W, Yang P, Meng C, Shibasaki R, Tang H, 2008. Anintegrated model to simulating sown area changes for majorcrops at a global scale. Science in China (Series D: EarthSciences), 51, 370-379Wu W B, Yang P, Tang H J, Zhou Q B, Shibasaki R. 2010.Characterizing spatial patterns of phenology in cropland ofChina based on remotely sensed data. Agricultural Sciencesin China, 9, 101-112Xia T, Wu W B, Zhou Q B, Zhou Y. 2013. Comparison of twoinversion methods for winter wheat leaf area index basedon hyperspectral remote sensing. Transactions of theChinese Society of Agricultural Engineering, 29, 139-147(in Chinese)Xiao Y, Zhao W, Zhou D, Gong H. 2013. Sensitivity analysisof vegetation reflectance to biochemical and biophysicalvariables at leaf, canopy, and regional scales. IEEETransactions on Geoscience and Remote Sensing, 52,4014-4024Yan G, Jiang L, Wang J, Chen L, Li X. 2003. Thermalbidirectional gap probability model for row crop canopies and validation. Science in China (Series D: Earth Sciences),46, 1241-1249Yang P, Shibasaki R, Wu W, Zhou Q, Chen Z, Zha Y, Shi Y,Tang H. 2007a. Evaluation of MODIS land cover and LAIproducts in cropland of North China Plain using in situmeasurements and Landsat TM images. IEEE Transactionson Geoscience and Remote Sensing, 45, 3087-3097Yang P, Wu W B, Tang H J, Zhou Q B, Zou J Q, Zhang L. 2007b.Mapping spatial and temporal variations of leaf area indexfor winter wheat in North China. Agricultural Sciences inChina, 6, 1437-1443Yang X, Huang J, Wu Y, Wang J, Wang P, Wang X, Huete A R.2011. Estimating biophysical parameters of rice with remotesensing data using support vector machines. Science China(Life Sciences), 54, 272-281Yao Y, Liu Q, Liu Q, Li X. 2008. LAI retrieval and uncertaintyevaluations for typical row-planted crops at different growthstages. Remote Sensing of Environment, 112, 94-106Zarco-tejada P J, Miller J R, Noland T L, Mohammed G H. 2001.Scaling-up and model inversion methods with narrowbandoptical indices for chlorophyll content estimation in closedforest canopies with hyperspectral data. IEEE Transactionson Geoscience and Remote Sensing, 39, 1491-1507Zhao C J, Huang W J, Wang J H, Yang M H, Xue X Z. 2002.The red edge parameters of different wheat varieties underdifferent fertilization and irrigation treatments. AgriculturalSciences in China, 1, 745-751Zhao F, Gu X, Verhoef W, Wang Q, Yu T, Liu Q, Huang H, QinW, Chen L, Zhao H. 2010. A spectral directional reflectancemodel of row crops. Remote Sensing of Environment, 114,265-285Zhu X H, Feng X M, Zhao Y S. 2011. Multi-scale MSDT inversionbased on LAI spatial knowledge. Science China (EarthSciences), 42, 246-255 (in Chinese)Zortea M, Plaza A. 2009. Spatial preprocessing for endmemberextraction. Geoscience and Remote Sensing, IEEETransactions on Geoscience and Remote Sensing, 47,2679-2693 |