Audic S, Claverie J M. 1997. The significance of digital gene expression profiles. Genome Research, 7, 986-995 Aung K, Lin S I, Wu C C, Huang Y T, Su C L, Chiou T J. 2006. Pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiology, 141, 1000-1011 Bari R, Datt P B, Stitt M, Scheible W R. 2006. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology, 141, 988-999 Bates T R, Lynch J P. 1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell and Environment, 19, 529-538 Begum H H, Osaki M, Shinano T, Miyatake H, Wasaki J, Yamamura T, Watanabe T. 2005. The function of a maize-derived phosphoenolpyruvate carboxylase (PEPC) in phosphorus-deficient transgenic rice. Soil Science and Plant Nutrition, 51, 497-506 Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. 2001. Controlling the false discovery rate in behavior genetics research. Behavioural Brain Research, 125, 279-284 Benjamini Y, Hochberg Y. 1995. Controlling the false discovery rate, a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society (Series B Methodological), 57, 289-300 Bozzo G G, Raghothama K G, Plaxton W C. 2004. Structural and kinetic properties of a novel purple acid phosphatase from phosphate-starved tomato (Lycopersicon esculentum) cell cultures. Biochemical Journal, 377, 419-428 Calderon-Vazquez C, Ibarra-Laclette E, Caballero-Perez J, Herrera-Estrella L. 2008. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels. Journal of Experimental Botany, 59, 2479-2497 Corrales I, Amenós M, Poschenrieder C, Barceló J. 2007. Phosphorus efficiency and root exudates in two contrasting tropical maize varieties. Journal of Plant Nutrition, 30, 887-900 Dolan L. 2001. The role of ethylene in root hair growth in Arabidopsis. Journal of Plant Nutrition and Soil Science, 164, 141-145 Cruz-Ramirez A, Oropeza-Aburto A, Razo-Hernandez F, Ramirez-Chavez E, Herrera-Estrella L. 2006. Phospholipase DZ2 plays an important role in extraplastidic galactolipid biosynthesis and phosphate recycling in Arabidopsis roots. Proceedings of the National Academy of Sciences of the United States of America, 103, 6765-6770 Duff S M G, Sarath G, Plaxton W C. 1994. The role of acid phosphatases in plant phosphorus metabolism. Physiologia Plantarum, 90, 791-800 Eveland A L, Satoh-Nagasawa N, Goldshmidt A, Meyer S, Beatty M, Sakai H, Ware D, Jackson D. 2010. Digital gene expression signatures for maize development. Plant Physiology, 154, 1024-1039 F rentzen M. 2004. Phosphatidylglycerol and sulfoquinovosyldiacylglycerol, anionic membrane lipids and phosphate regulation. Current Opinion in Plant Biology, 7, 270-276 Gaume A, Mächler F, de León C, Narro L, Frossard E. 2001. Low-P tolerance by maize (Zea mays L.) genotypes, significance of root growth, and organic acids and acid phosphatase root exudation. Plant and Soil, 228, 253-264 Gene Ontology Consortium. 2008. The gene ontology project in 2008. Nucleic Acids Research, 36, D440-D444. Green P J. 1994. The ribonucleases of higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 421-445 Hajabbasi M A, Schumacher T E. 1994. Phosphorus effects on root growth and development in two maize genotypes. Plant and Soil, 158, 39-46 Hardtke C S. 2006. Root development-branching into novel spheres. Current Opinion in Plant Biology, 9, 66-71 ‘t Hoen P A, Ariyurek Y, Thygesen H H, Vreugdenhil E, Vossen R H, de Menezes R X, Boer J M, van Ommen G J, den Dunnen J T. 2008. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms. Nucleic Acids Research, 36, e141. Hsieh L C, Lin S I, Shih A C, Chen J W, Lin W Y, Tseng C Y, Li W H, Chiou T J. 2009. Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiology, 151, 2120-2132 Kanehisa M. 2002. The KEGG database. Novartis Foundation Symposium, 247, 91-101 Li D, Zhu H, Liu K, Liu X, Leggewie G, Udvardi M, Wang D. 2002. Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. The Journal of Biological Chemistry, 277, 27772-27781 Li L, Liu C, Lian X. 2010. Gene expression profiles in rice roots under low phosphorus stress. Plant Molecular Biology, 72, 423-432 Li S C, Gong J, Wang J. 2003. Screening maize inbred lines seedling for tolerance to low phosphate stress. Journal of Maize Sciences, 11, 85-89 (in Chinese) Liu X S, Chen F J, Chun L, Song J L, Mi G H. 2003. Genotypic difference of maize inbred lines in tolerance to phosphorus deficient. Journal of Maize Sciences, 11, 23-27. (in Chinese) Ma Z, Baskin T I, Brown K M, Lynch J P. 2003. Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiology, 131, 1381-1390 Marschner H. 1995. Functions of mineral nutrients, macronutrients. In: Mineral Nutrition of Higher Plants. 2nd ed. Academic Press, London. pp. 229-312 Misson J, Raghothama K G, Jain A, Jouhet J, Block M A, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud M C. 2005. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 102, 11934-11939 Misson J, Thibaud M C, Bechtold N, Raghothama K, Nussaume L. 2004. Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plants. Plant Molecular Biology, 55, 727-741 Mitsukawa N, Okumura S, Shirano Y, Sato S, Kato T, Harashima S, Shibata D. 1997. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proceedings of the National Academy of Sciences of the United States of America, 94, 7098-7102 Morrissy A S, Morin R D, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra M A. 2009. Next- generation tag sequencing for cancer gene expression profiling. Genome Research, 19, 1825-1835 Mudge S R, Rae A L, Diatloff E, Smith F W. 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal, 31, 341-353 Nagy R, Vasconcelos M J, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama K G, Bucher M. 2006. Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biology, 8, 186-197 Narang R A, Bruene A, Altmann T. 2000. Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiology, 124, 1786-1799 Nilsson L, Muller R, Nielsen T H. 2007. Increased expression of the MYB-related transcription factor, PHR1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant, Cell and Environment, 30, 1499-1512 Paszkowski U, Kroken S, Roux C, Briggs S P. 2002. Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 99, 13324-13329 Poirier Y, Bucher M. 2002. Phosphate transport and homeostasis in Arabidopsis. The Arabidopsis Book, 1, e0024. Raghothama K G. 1999. Phosphate acquisition. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 665-693 Rausch C, Zimmermann P, Amrhein N, Bucher M. 2004. Expression analysis suggests novel roles for the plastidic phosphate transporter Pht2;1 in auto- and heterotrophic tissues in potato and Arabidopsis. The Plant Journal, 39, 13-28 Ruzanov P, Riddle D L. 2010. Deep SAGE analysis of the Caenorhabditis elegans transcriptome. Nucleic Acids Research, 38, 3252-3262 Ryan P, Delhaize E, Jones D. 2001. Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 527-560 Schachtman D P, Reid R J, Ayling S M. 1998. Phosphorus uptake by plants, from soil to cell. Plant Physiology, 116, 447-453 Shen Y, Jiang Z, Yao X, Zhang Z, Lin H, Zhao M, Liu H, Peng H, Li S, Pan G. 2012a. Genome expression profile analysis of the immature maize embryo during dedifferentiation. PLoS ONE, 7, e32237. Shen Y, Zhang Y, Lin H, Gao S, Pan G. 2012b. Effect of low phosphorus stress on endogenous hormone levels of different maize genotypes in seedling stage. Journal of Biological Sciences, 12, 308-314 Shin H, Shin H S, Dewbre G R, Harrison M J. 2004. Phosphate transport in Arabidopsis, Pht1;1 and Pht1;4 play a major role in phosphate acquisition from both low- and high- phosphate environments. The Plant Journal, 39, 629-642 Silva Á, Gabelman W. 1992. Screening maize inbred lines for tolerance to low-P stress condition. Plant and Soil, 146, 181-187 Tatusov R L, Fedorova N D, Jackson J D, Jacobs A R, Kiryutin B, Koonin E V, Krylov D M, Mazumder R, Mekhedov S L, Nikolskaya A N, Rao B S, Smirnov S, Sverdlov A V, Vasudevan S, Wolf Y I, Yin J J, Natale D A. 2003. The COG database, an updated version includes eukaryotes. BMC Bioinformatics, 4, 41. Wang C, Chen H, Hao Q, Sha A, Shan Z, Chen L, Zhou R, Zhi H, Zhou X. 2012. Transcript profile of the response of two soybean genotypes to potassium deficiency. PLoS ONE, 7, e39856. Wang Y, Peng X, Xu W, Luo Y, Zhao W, Hao J, Liang Z, Zhang Y, Huang K. 2012. Transcript and protein profiling analysis of OTA-induced cell death reveals the regulation of the toxicity response process in Arabidopsis thaliana. Journal of Experimental Botany, 63, 2171-2187 Wasaki J, Omura M, Ando M, Dateki H, Shinano T, Osaki M, Ito H, Matsui H, Tadano T. 2000. Molecular cloning and root specific expression of secretory acid phosphatase from phosphate deficient lupin (Lupinus albus L.). Soil Science and Plant Nutrition, 46, 427-437 Williamson L C, Ribrioux S P, Fitter A H, Leyser H M. 2001. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiology, 126, 875-882 Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P. 2005. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiology, 138, 2087-2096 Zhang J, Gao S, Yang K, Zhang Z, Lin H, Huang N, Zheng M, Xu K, Cheng Y, Pan G. 2008. Screening and identification for tolerance to low phosphorus stress of maize germplasm resource. Journal of Plant Genetic Resource, 9, 335-339 Zhang L M, He L Y, Li J S, Xu S Z. 2004. Investigation of maize inbred lines on tolerance to low-phosphorus stress at seedling stage. Scientia Agricultura Sinica, 37, 1955- 1959. (in Chinese) Zhang Z, Lin H, Shen Y, Gao J, Xiang K, Liu L, Ding H, Yuan G, Lan H, Zhou S, Zhao M, Gao S, Rong T, Pan G. 2012. Cloning and characterization of miRNAs from maize seedling roots under low phosphorus stress. Molecular Biology Reports, 39, 8137-8146 Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li W X. 2012. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS ONE, 7, e29669. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P. 2008. OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiology, 146, 1673-1686 Zhu J, Lynch J P. 2004. The contribution of lateral rooting to phosphorus acquisition efficiency in maize (Zea mays) seedlings. Functional Plant Biology, 31, 949-958. |