Alvarez-Buylla E R, Liljegren S J, Pelaz S, Gold S E, Burgeff C, Ditta G S, Vergara-Silva F, Yanofsky M F. 2000. MADS-box gene evolution beyond flowers: Expression in pollen, endosperm, guard cells, roots and trichomes. The Plant Journal, 24, 457-466 Angenent G C, Colombo L. 1996. Molecular control of ovule development. Trends in Plant Science, 1, 228-232 Arora R, Agarwal P, Ray S, Singh A K, Singh V P, Tyagi A K, Kapoor S. 2007. MADS-box gene family in rice: Genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genomics, 8, 242. Basra A S, Malik C. 1984. Development of the cotton fiber. International Review of Cytology, 89, 65-113 Becker A, Theißen G. 2003. The major clades of MADS- box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29, 464. Bemer M, Wolters-Arts M, Grossniklaus U, Angenent G C. 2008. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules. The Plant Cell Online, 20, 2088- 2101. de Bodt S, Raes J, van de Peer Y, Theißen G. 2003. And then there were many: MADS goes genomic. Trends in Plant Science, 8, 475-483 Bowman J L, Smyth D R, Meyerowitz E M. 1991. Genetic interactions among floral homeotic genes of Arabidopsis. Development, 112, 1-20 Coen E S, Meyerowitz E M. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature, 353, 31-37 Colombo M, Masiero S, Vanzulli S, Lardelli P, Kater M M, Colombo L. 2008. AGL23, a type I MADS-box gene that controls female gametophyte and embryo development in Arabidopsis. The Plant Journal, 54, 1037-1048 Díaz-Riquelme J, Lijavetzky D, Martínez-Zapater J M, Carmona M J. 2009. Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiology, 149, 354-369 Dorca-Fornell C, Gregis V, Grandi V, Coupland G, Colombo L, Kater M M. 2011. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems. The Plant Journal, 67, 1006-1017 Gregis V, Sessa A, Colombo L, Kater M M. 2006. AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. The Plant Cell Online, 18, 1373-1382 Gu Q, Ferrándiz C, Yanofsky M F, Martienssen R. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development, 125, 1509-1517 Guo Y, Zhu Q, Zheng S, Li M. 2007. Cloning of a MADS box gene (< i> GhMADS3</i>) from cotton and analysis of its homeotic role in transgenic tobacco. Journal of Genetics and Genomics, 34, 527-535 Henschel K, Kofuji R, Hasebe M, Saedler H, Münster T, Theißen G. 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Molecular Biology and Evolution, 19, 801-814 Hepworth S R, Valverde F, Ravenscroft D, Mouradov A, Coupland G. 2002. Antagonistic regulation of flowering- time gene SOC1 by CONSTANS and FLC via separate promoter motifs. The EMBO Journal, 21, 4327-4337 Honma T, Goto K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature, 409, 525-529 de Hoon M J L, Imoto S, Nolan J, Miyano S. 2004. Open source clustering software. Bioinformatics, 20, 1453- 1454. Hu L, Liu S, Somers D. 2012. Genome-wide analysis of the MADS-box gene family in cucumber. Genome, 55, 245- 256. Jung C, Müller A E. 2009. Flowering time control and applications in plant breeding. Trends in Plant Science, 14, 563. Kaufmann K, Melzer R, Theißen G. 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene, 347, 183. Lee J H, Yoo S J, Park S H, Hwang I, Lee J S, Ahn J H. 2007. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes & Development, 21, 397-402 Leseberg C H, Li A, Kang H, Duvall M, Mao L. 2006. Genome-wide analysis of the MADS-box gene family in< i> Populus trichocarpa</i>. Gene, 378, 84-94 Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell C A, Ito T, Meyerowitz E,Yu H. 2008. A repressor complex governs the integration of flowering signals in< i> Arabidopsis</i>. Developmental Cell, 15, 110-120 Li Y, Ning H, Zhang Z, Wu Y, Jiang J, Su S, Tian F, Li X. 2011. A cotton gene encoding novel MADS-box protein is preferentially expressed in fibers and functions in cell elongation. Acta Biochimica et Biophysica Sinica (Shanghai), 43, 607-617 Messenguy F, Dubois E. 2003. Role of MADS box proteins and their cofactors in combinatorial control of gene expression and cell development. Gene, 316, 1-21 Pelaz S, Ditta G S, Baumann E, Wisman E, Yanofsky M F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200-203 Pinyopich A, Ditta G S, Savidge B, Liljegren S J, Baumann E, Wisman E, Yanofsky M F. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424, 85-88 Purugganan M D. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: Phylogenetic and molecular clock estimates. Journal of Molecular Evolution, 45, 392-396 Ratcliffe O J, Kumimoto R W, Wong B J, Riechmann J L. 2003. Analysis of the Arabidopsis MADS AFFECTING FLOWERING gene family: MAF2 prevents vernalization by short periods of cold. Science Signalling, 15, 1159. Reeves P A, He Y, Schmitz R J, Amasino R M, Panella L W, Richards C M. 2007. Evolutionary conservation of the FLOWERING LOCUS C-mediated vernalization response: Evidence from the sugar beet (Beta vulgaris). Genetics, 176, 295-307 Riechmann J, Meyerowitz E. 1997. MADS domain proteins in plant development. Biological Chemistry, 378, 1079. Riechmann J L, Krizek B A, Meyerowitz E M. 1996. Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proceedings of the National Academy of Sciences of the United States of America, 93, 4793-4798 Rounsley S D, Ditta G S, Yanofsky M F. 1995. Diverse roles for MADS box genes in Arabidopsis development. The Plant Cell Online, 7, 1259-1269 Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101-1108 Schönrock N, Bouveret R, Leroy O, Borghi L, Köhler C, Gruissem W, Hennig L. 2006. Polycomb-group proteins repressthe floral activator AGL19 in the FLC-independent vernalization pathway. Genes & Development, 20, 1667- 1678. Searle I, He Y, Turck F, Vincent C, Fornara F, Kröber S, Amasino R A, Coupland G. 2006. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. Genes & Development, 20, 898-912 Shao S Q, Li B Y, Zhang Z T, Zhou Y, Jiang J, Li X B. 2010. Expression of a cotton MADS-box gene is regulated in anther development and in response to phytohormone signaling. Journal of Genetics and Genomics, 37, 805-816 Sommer H, Beltran J P, Huijser P, Pape H, Lönnig W, Saedler H, Schwarz-Sommer Z. 1990. Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: The protein shows homology to transcription factors. The EMBO Journal, 9, 605. Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596-1599 Tapia-López R, García-Ponce B, Dubrovsky J G, Garay- Arroyo A, Pérez-Ruíz R V, Kim S H, Acevedo F, Pelaz S, Alvarez-Buylla E R. 2008. An AGAMOUS-related MADS-box gene, XAL1 (AGL12), regulates root meristem cell proliferation and flowering transition in Arabidopsis. Plant Physiology, 146, 1182-1192 Theißen G, Kim J T, Saedler H. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. Journal of Molecular Evolution, 43, 484-516 Theißen G. 2001. Development of floral organ identity: Stories from the MADS house. Current Opinion in Plant Biology, 4, 75-85 Theissen G, Becker A, di Rosa A, Kanno A, Kim J T, Münster T, Winter K U, Saedler H. 2000. A short history of MADS-box genes in plants. Plant Molecular Biology, 42, 115-149 Vandenbussche M, Theissen G, van de Peer Y, Gerats T. 2003. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Research, 31, 4401- 4409. Wang K, Wang Z, Li F, Ye W, Wang J, Song G, Yue Z, Cong L, Shang H, Zhu S, Zou C, Li Q, Yuan Y, Lu C, Wei H, Gou C, Zheng Z, Yin Y, Zhang X, Liu K. 2012. The draft genome of a diploid cotton Gossypium raimondii. Nature Genetics, 44, 1098-1103 Weigel D, Meyerowitz E. 1994. The ABCs of floral homeotic genes: Review. Cell, 78, 203-209 Yang Y, Fanning L, Jack T. 2003. The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. The Plant Journal, 33, 47-59 Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A, Meyerowitz E M. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346, 35-39 Zhao Y, Li X, Chen W, Peng X, Cheng X, Zhu S, Cheng B. 2011. Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell, Tissue and Organ Culture, 105, 159-173 |