[1]Allen R S, Li J, Alonso-Peral M M, White R G, Gubler F,Millar A A. 2010. MicroR159 regulation of mostconserved targets in Arabidopsis has negligiblephenotypic effects. Silence, 1, 18.Axtell M J, Snyder J A, Bartel D P. 2007. Common functionsfor diverse small RNAs of land plants. The Plant Cell,19, 1750-1769[2]Bonnet E, Wuyts J, Rouze P, van de Peer Y. 2004. Evidencethat microRNA precursors, unlike other non-codingRNAs, have lower folding free energies than randomsequences. Bioinformatics, 20, 2911-2917[3]Buchner P, Takahashi H, Hawkesford M J 2004. Plantsulphate transporters: co-ordination of uptake,intracellular and long-distance transport. Journal ofExperimental Botany, 55, 1765-1773[4]Chen X, Yang R F, Li W C, Fu F L. 2010. Identification of 21microRNAs in maize and their differential expressionunder drought stress. African Journal of Biotechnology,9, 4741-4753[5]Chuck G, Cigan A M, Saeteurn K, Hake S. 2007. Theheterochronic maize mutant Corngrass1 results fromoverexpression of a tandem microRNA. NatureGenetics, 39, 544-549[6]Cohen D, Bogeat-Triboulot M B, Tisserant E, Balzergue S, Martin-Magniette M L, Lelandais G, Ningre N, Renou JP, Tamby J P, Thiec D L, et al. 2010. Comparativetranscriptomics of drought responses in Populus: ameta-analysis of genome-wide expression profiling inmature leaves and root apices across two genotypes.BMC Genomics, 11, 630.[7]Conley T R, Sharp R E, Walker J C. 1997. Water deficitrapidly stimulates the activity of a protein kinase in theelongation zone of the maize primary root. PlantPhysiology, 113, 219-226[8]Deikman J, Petracek M, Heard J E. 2012. Drought tolerancethrough biotechnology: improving translation from thelaboratory to farmers’ fields. Current Opinion onBiotechnology, 23, 243-250.[9]Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. 2009.Differential expression of miRNAs in response to saltstress in maize roots. Annals of Botany, 103, 29-38.[10]Fu F L, Feng Z L, Gao S B, Zhou S F, Li W C. 2008. Evaluationand quantitative inheritance of several drought-relativetraits in maize. Agricultural Sciences in China, 7, 280-290.[11]Jiang T, Fountain J, Davis G, Kemerait R, Scully B, Lee R D,Guo B. 2012. Root morphology and gene expressionanalysis in response to drought stress in maize (Zeamays). Plant Molecular Biology Reporter, 30, 360-369.[12]Jiao Y, Song W, Zhang M, Lai J. 2011. Identification ofnovel maize miRNAs by measureing the precision ofprecursor processing. BMC Plant Biology, 11, 141.[13]Kantar M, Lucas S J, Budak H. 2011. miRNA expressionpatterns of Triticum dicoccoides in response to shockdrought stress. Planta, 233, 471-484[14]Khraiwesh B, Zhu J K, Zhu J. 2012. Role of miRNAs andsiRNAs in biotic and abiotic stress responses of plants.Biochimica et Biophysica Acta, 1819, 137-148[15]Kobayashi Y, Tamamoto S, Minami H, Kagaya Y, Hattori T.2004. Differential activation of the rice sucrosenonfermenting 1 related protein kinase 2 family byhyperosmotic stress and abscisic acid. The Plant Cell,16, 1163-1177[16]Lee M, Martin M N, Hudson A O, Lee J, Muhitch M J,Leustek T. 2005. Methionine and threonine synthesisare limited by homoserine availability and not theactivity of homoserine kinase in Arabidopsis thaliana.The Plant Journal, 41, 685-696[17]Li F H, Fu F L, Sha L N, He L, Li W C. 2009. Differentialexpression of serine/threonine protein phosphatasetype-2C under drought stress in maize Plant MolecularBiology Reporter, 27, 29-37[18]Liu Q, Chen Y Q. 2010. A new mechanism in plantengineering: The potential roles of microRNAs inmolecular breeding for crop improvement. BiotechnologyAdvances, 28, 301-307[19]Liu Q, Zhang Y C, Wang C Y, Luo Y C, Huang Q J, Chen SY, Zhou H, Qu L H, Chen Y Q. 2009. Expression analysisof phytohormone regulated microRNAs in rice, implyingtheir regulation roles in plant hormone signaling. FEBSLetters, 583, 723-728[20]Lu Y, Hao Z, Xie C, Crossa J, Araus J L, Gao S, Vivek B S,Magorokosho C, Mugo S, Makumbi D, et al. 2011.Large-scale screening for maize drought resistanceusing multiple selection criteria evaluated under waterstressedand well-watered environments. Field CropsResearch, 124, 37-45[21]Ma Y, Szostkiewicz I, Korte A, Szostkiewicz I, Korte A,Moes D, Yang Y, Christmann A, Grill E. 2009. Regulatorsof PP2C phosphatase activity function as abscisic acidsensors. Science, 324, 1064-1068[22]Meng Y, Huang F, Shi Q, Cao J, Chen D, Zhang J, Ni J, WuP, Chen M. 2009. Genome-wide survey of ricemicroRNAs and microRNA target pairs in the root of anovel auxin-resistant mutant. Planta, 230, 883-898[23]Michel B E, Kaufmann M R. 1973. The osmotic potential ofpolyethylene glycol 6000. Plant Physiology, 51, 914-916[24]Nag A, King S, Jack T. 2009. miR319a targeting of TCP4 iscritical for petal growth and development inArabidopsis. Proceedings of the National Academy ofSciences of the United States of America, 106, 22534-22539[25]Neumann P M. 2008. Coping mechanisms for crop plants indrought-prone environments. Annals of Botany, 101,901-907[26]Palatnik J F, Allen E, Wu X, Schommer C, Schwab R,Carrington J C, Weigel D. 2003. Control of leafmorphogenesis by microRNAs. Nature, 425, 257-263[27]Park S Y, Fung P, Nishimura N, Jensen D R, Fujii H, Zhao Y,Lumba S, Santiago J, Rodrigues A, Chow T F, et al.2009. Abscisic acid inhibits type 2C proteinphosphatases via the PYL family of START proteins.Science, 324, 1068-1071[28]Park C M, Jung J H, Seo P J, Kang S K. 2011. miR172 signalsare incorporated into the miR156 signaling pathway atthe SPL3/4/5 genes in Arabidopsis developmentaltransitions. Plant Molecular Biology, 76, 35-45[29]Reyes J L, Chua N H. 2007. ABA induction of miR159controls transcript levels of two MYB factors duringArabidopsis seed germination. The Plant Journal, 49,592-606[30]Schommer C, Palatnik J F, Aggarwal P, Chetelat A, Cubas P,Farmer E E, Nath U, Weigel D. 2008. Control ofjasmonate biosynthesis and senescence by miR319targets. PLoS Biology, 6, e230.[31]Schwab R. 2012. The roles of mir156 and mir172 in phasechange regulation. In: Sunkar R, ed., MicroRNAs inPlant Development and Stress Responses, Signalingand Communication in Plants. Springer-Verlag BerlinHeidelberg. pp. 49-68[32]Shinozaki K, Yamaguchi-Shinozaki K. 2007. Gene networksinvolved in drought stress response and tolerance.Journal of Experimental Botany, 58, 221-227[33]Sun G, Stewart Jr C N, Xiao P, Zhang B. 2012. MicroRNAexpression analysis in the cellulosic biofuel cropswitchgrass (Panicum virgatum) under abiotic stress.PLoS ONE, 7, e32017. Sunkar R, Li Y F, Jagadeeswaran G. 2012. Functions ofmicroRNAs in plant stress responses. Trends in PlantScience, 17, 196-203[34]Sunkar R, Zhu J K. 2004. Novel and stress-regulatedmicroRNAs and other small-RNAs from Arabidopsis.The Plant Cell, 16, 2001-2019[35]Tambo J A, Abdoulaye T. 2012. Climate change andagricultural technology adoption the case of droughttolerant maize in rural Nigeria. Mitigation andAdaptation Strategies for Global Change, 17, 277-292[36]Wang T, Chen L, Zhao M, Tian Q, Zhang W H. 2011.Identification of drought-responsive microRNAs inMedicago truncatula by genome-wide high-throughputsequencing. BMC Genomics, 12, 367.[37]Wang Y, Hu Z, Yang Y, Chen X, Chen G. 2009. Functionannotation of an SBP-box gene in Arabidopsis basedon analysis of co-expression networks and promoters.International Journal of Molecular Sciences, 10, 116-132[38]Wei L, Zhang D, Xiang F, Zhang Z. 2009. Differentiallyexpressed miRNAs potentially involved in theregulation of defense mechanism to drought stress inmaize seedlings. International Journal of PlantSciences, 170, 979-989[39]Wu G, Park M Y, Conway S R, Wang J W, Weige D, PoethigR S. 2009. The Sequential action of miR156 and miR172regulates developmental timing in Arabidopsis. Cell,138, 750-759[40]Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L. 2012.Gradual increase of miR156 regulates temporalexpression changes of numerous genes during leafdevelopment in rice. Plant Physiology, 158, 1382-1394[41]Xu Z, Zhong S, Li X, Li W, Rothstein S J, Zhang S, Bi Y, XieC. 2011. Genome-wide identification of microRNAs inresponse to low nitrate availability in maize leaves androots. PLoS ONE, 6, e28009.[42]Yu N, Cai W J, Wang S, Shana C M, Wang L J, Chen X Y.2010. Temporal control of trichome distribution bymicroRNA156-targeted SPL genes in Arabidopsisthaliana. The Plant Cell, 22, 2322-2335[43]Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A.2006. Conservation and divergence of plant microRNAgenes. The Plant Journal, 46, 243-259[44]Zhang L, Chia J M, Kumari S, Stein J C, Liu Z, NarechaniaA, Maher C A, Guill K, McMullen M D, Ware D. 2009. Agenome-wide characterization of microRNA genes inmaize. PLoS Genetics, 5, e1000716.[45]Zhang Z, Lin H, Shen Y, Gao J, Xiang K, Liu L, Ding H,Yuan G, Lan H, Zhou S, et al. 2012. Cloning andcharacterization of miRNAs from maize seedling rootsunder low phosphorus stress. Molecular BiologyReporter, 39, 8137-8146[46]Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. 2008.Submergence-responsive microRNAs are potentiallyinvolved in the regulation of morphological andmetabolic adaptations in maize root cells. Annals ofBotany, 102, 509-519[47]Zhao M, Tai H, Sun S, Zhang F, Xu Y, Li W X. 2012. Cloningand characterization of maize miRNAs involved inresponses to nitrogen feficiency. PLoS ONE, 7, e29669. |