[1]Ali A J, Xu J L, Ismail A M, Fu B Y, Vijaykumar C H M, Gao YM, Domingo J, Maghirang R, Yu S B, Gregorio G, et al.2006. Hidden diversity for abiotic and biotic stresstolerances in the primary gene pool of rice revealed bya large backcross breeding program. Field CropsResearch, 97, 66-76[2]Brondani C, Rangel P H N, Brondani R P V, Ferreira M E.2002. QTL mapping and introgression of yield-relatedtraits from Oryza glumaepatula to cultivated rice (Oryzasativa) using microsatellite markers. Theoretical andApplied Genetics, 104, 1192-1203[3]Chen M Y, Ali J, Fu B Y, Xu J L, Zhao M F, Jiang Y Z, ZhuL H, Shi Y Y, Yao D N, Gao Y M, et al. 2011. Detection ofdrought-related loci in rice at reproductive stage usingselected introgressed lines. Agricultural Sciences inChina, 10, 1-8[4]Deng D S, Guang H Y, Deng W M. 1996. Breeding andutilization of restorer line Fuhui 838. Hybrid Rice, 4, 10-12[5](in Chinese)Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H,Zhang Q F. 2006. GS3, a major QTL for grain length andweight and minor QTL for grain width and thickness inrice, encodes a putative transmembrane protein.Theoretical and Applied Genetics, 112, 1164-1171[6]Ge H M, Wang L F, You G X, Hao C Y, Dong Y C, Zhang X Y.2009. Fundamental roles of cornerstone breeding linesin wheat reflected by SSR random scanning. ScientiaAgricultural Sinica, 42, 1503-1511 (in Chinese)[7]He Y X, Zheng T Q, Hao X B, Wang L F, Gao Y M, Hua Z T,Xu J L, Zhu L H, Li Z K. 2010. Yield performances ofjaponica introgression lines selected for droughttolerance in a BC breeding programme. Plant Breeding,129, 167-175[8]Jiang G H, He Y Q, Xu C G, Li X H, Zhang Q F. 2004. Thegenetic basis of stay-green in rice analyzed in apopulation of doubled haploid lines derived from anindica by japonica cross. Theoretical and AppliedGenetics, 108, 688-698[9]Li Z K, Fu B Y, Gao Y M, Xu J L, Ali J, Lafitte H R, Jiang Y Z,Rey D, Vijayakumar C H M, Maghirang R, et al. 2005.Genome-wide introgression lines and their use in geneticand molecular dissection of complex phenotypes in rice.Plant Molecular Biology, 59, 33-52[10]Marri P R, Laxminarayana S N, Reddy L, Siddiq E A. 2005.Identification and mapping of yield and yield relatedQTLs from an Indian accession of Qryza rufipogon.BMC Genetics, 6, doi: 10.1186/1471-2156-6-33[11]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K,Walton M, Fu B Y, Maghirang R, Li Z K, Xing Y Z, et al2002. Development and mapping of 2240 new SSRmarkers for rice (Oryza sativa L.). DNA Research, 9,199-207[12]Rosegrant M W, Cline S A. 2003. Global food security:challenges and policies. Science, 302, 1917-1919[13]Septiningsih E M, Prasetiyono J, Lubis E, Tai T H, TjubaryatT, Moeljopawiro S, McCouch S R. 2003. Identificationof quantitative trait loci for yield and yield componentsin an advanced backcross population derived from theOryza sativa variety IR64 and the wild relative O. rufipogon.Theoretical and Applied Genetics, 107, 1419-1432[14]Tanksley S D, Nelson J C. 1996. Advanced backcross QTLanalysis: a method for the simultaneous discovery andtransfer of valuable QTLs from unadapted germplasminto elite breeding lines. Theoretical and AppliedGenetics, 92, 191-203[15]Temnykh S, Park W D, Ayres N, Cartinhour S, Hauck N,Lipovich L, Cho Y G, Issii T, McCouch S R. 2000.Mapping and genome organization of microsatellitesequences in rice (Oryza sativa L.). Theoretical andApplied Genetics, 100, 697-712[16]Temnykh S, DeClerck G, Lukashova A, Lipovich L,Cartinhour S, McCouch S. 2001. Computational andexperimental analysis of microsatellites in rice (Oryzasativa L.): frequency, length variation, transposonassociations, and genetic marker potential. GenomeResearch, 11, 1441-1452[17]Thomson M J, Tai T H, McClung A M, Lai X H, Hinga M E,Lobos K B, Xu Y, Martinez C P, McCouch S R. 2003.Mapping quantitative trait loci for yield, yieldcomponents and morphological traits in an advancedbackcross population between Oryza rufipogon andthe Oryza sativa cultivar Jefferson. Theoretical andApplied Genetics, 107, 479-493[18]Wang A D, Chen H Z, Wang B L, Ye C Q, Chen J S, Sun D F.1997. High-yielding techniques for the seed productionof Xieyou 57. Hybrid Rice, 12, 30. (in Chinese)[19]Wang C R, Chen S, Yu S B. 2011. Functional markersdeveloped from multiple loci in GS3 for fine markerassistedselection of grain length in rice. Theoreticaland Applied Genetics, 122, 905-913[20]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J F, Zhai HQ, Wang J M[21]2006. QTL mapping of grain length in rice(Oryza sativa L.) using chromosome segmentsubstitution lines. Genetics Research, 88, 93-104[22]Wei X H, Tang S X, Yu H Y, Wang Y P, Yuan X P, Xu Q.2010. Beneficial analysis on introduced rice germplasmfrom abroad in China. Chinese Journal of Rice Science,24, 5-11[23]Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L,Zhou H J, Yu S B, Xu C G, Li X H, et al. 2008. Naturalvariation in Ghd7 is an important regulator of headingdate and yield potential in rice. Nature Genetics, 40,761-767[24]Yang G M. 1990. Succesfully test midseason rice new varietyTeqing with high yield and disease resistance. HubeiAgricultural Sciences, 4, 33-33 (in Chinese)[25]Zhang F, Zhai H Q, Paterson A H, Xu J L, Gao Y M, ZhengT Q, Wu R L, Fu B Y, Ali J H, Li Z K. 2011. Dissectiongenetic networks underling complex phenotypes: thetheoretical framework. PLoS ONE, 6, e14541.[26]Zhang Y S, Luo L J, Liu T M, Xu C G, Xing Y Z. 2009. Fourrice QTL controlling number of spikelets per panicleexpressed the characteristics of single Mendelian genein near isogenic backgrounds. Theoretical and AppliedGenetics, 118, 1035-1044[27]Zhuang J Y, Fan Y Y, Wu J L, Xia Y W, Zheng K L. 2001.Comparison of the detection of QTL for yield traits indifferent generation of a rice cross using two mappingapproaches. Acta Genetica Sinica, 28, 458-464. |