[1]Aitken A. 1996. 14-3-3 and its possible role in co-ordinatingmultiple signaling pathways Trends in Cell Biology,6, 341-347[2]Aitken A, Collinge D B, van Heusden B P, Isobe T,Roseboom P H, Rosenfeld G, Soll J. 1992. 14-3-3 proteins:a highly conserved, widespread family of eukaryoticproteins Trends in Biochemical Sciences, 17, 498-501[3]Bachmann M, Huber J L, Athwal G S, Wu K, Ferl R J, HuberS C. 1996a. 14-3-3 proteins associate with the regulatoryphosphorylation site of spinach leaf nitrate reductasein an isoform-specific manner and reducedephosphorylation of Ser-543 by endogenous proteinphosphatases FEBS Letters, 398, 26-30[4]Bachmann M, Huber J L, Liao P C, Gage D A, Huber S C.1996b. The inhibitor protein of phosphorylated nitrate reductase from spinach (Spinacia oleracea) leaves isa 14-3-3 protein FEBS Letters, 387, 127-131[5]Bai M Y, Zhang L Y, Gampala S S, Zhu S W, Song W Y,Chong K, Wang Z Y. 2007. Functions of OsBZR1 and14-3-3 proteins in brassinosteroid signaling in rice Proceedings of the National Academy of Sciences ofthe United States of America, 104, 13839-13844[6]Bairoch A, Bucher P. 1994. Prosite: recent developments.Nucleic Acids Research, 22, 3583-3589[7]Birchler J A, Auger D L, Riddle N C. 2003. In search of themolecular basis of heterosis. The Plant Cell, 15, 2236-2239[8]Bunney T D, van den Wijngaard P W, de Boer A H. 2002.14-3-3 protein regulation of proton pumps and ionchannels Plant Molecular Biology, 50, 1041-1051[9]Chevalier D, Morris E R, Walker J C. 2009. 14-3-3 and FHAdomains mediate phosphoprotein interaction. AnnualReview of Plant Biology, 60, 67-91[10]Clough S J, Bent A F. 1998. Floral dip: a simplified methodfor Agrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16, 735-743[11]Denison F C, Paul A L, Zupanska A K, Ferl R J. 2011. 14-3-3 proteins in plant physiology Seminars in Cell &Developmental Biology, 22, 720-727[12]Duvick D N. 1997. Heterosis, feeding people and protectingnatural resources. In: Genetics and Exploitation ofHeterosis in Crops. American Society of Agronomy,Madison, Wisconsin, USA. pp. 19-29[13]Duvick D N. 2001. Biotechnology in the 1930s: thedevelopment of hybrid maize. Nature Reviews Genetics,2, 69-74[14]Feldman M, Levy A A. 2005. Allopolyploidy - a shapingforce in the evolution of wheat genomes. Cytogeneticand Genome Research, 109, 250-258[15]Flint-Garcia S A, Buckler E S, Tiffin P, Ersoz E, Springer NM. 2009. Heterosis is prevalent for multiple traits indiverse maize germplasm. PLoS One, 4, e7433.[16]Fuglsang A T, Visconti S, Drumm K, Jahn T, Stensballe A,Mattei B, Jensen O N, Aducci P, Palmgren M G. 1999.Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residuesTyr946-Thr-Val and requires phosphorylation of Thr947The Journal of Biological Chemistry, 274, 36774-36780[17]Fulgosi H, Soll J, de Faria M S, Korthout H A, Wang M,Testerink C. 2002. 14-3-3 proteins and plantdevelopment Plant Molecular Biology, 50, 1019-1029[18]Gardino A K, Smerdon S J, Yaffe M B. 2006. Structuraldeterminants of 14-3-3 binding specificities andregulation of subcellular localization of 14-3-3-ligandcomplexes: a comparison of the X-ray crystal structuresof all human 14-3-3 isoforms Seminars in CancerBiololgy, 16, 173-182[19]Gampala S S, Kim T W, He J X, Tang W, Deng Z, Bai M Y,Guan S, Lalonde S, Sun Y, Gendron J M, et al. 2007. Anessential role for 14-3-3 proteins in brassinosteroidsignal transduction in Arabidopsis DevelopmentalCell, 13, 177-189[20]Guo M, Rupe M A, Dieter J A, Zou J, Spielbauer D, DuncanK E, Howard R J, Hou Z, Simmons C R. 2010. CellNumber Regulator1 affects plant and organ size inmaize: implications for crop yield enhancement andheterosis. The Plant Cell, 22, 1057-1073[21]Guo M, Rupe M A, Yang X, Crasta O, Zinselmeier C, SmithO S, Bowen B. 2006. Genome-wide transcript analysisof maize hybrids: allelic additive gene expression andyield heterosis. Theoretical and Applied Genetics, 113,831-845[22]Guo M, Rupe M A, Zinselmeie C, Habben J, Bowen B A,Smith O S. 2004. Allelic variation of gene expression inmaize hybrids. The Plant Cell, 16, 1707-1716[23]Li X, Dhaubhadel S. 2011. Soybean 14-3-3 gene family:identification and molecular characterization Planta,233, 569-582[24]Lu G, Sehnke P C, Fed R J. 1994. Phosphorylation andcalcium binding properties of an Arabidopsis GF14brain protein homolog. The Plant Cell, 4, 501-510[25]May T, Soll J. 2000. 14-3-3 proteins form a guidance complexwith chloroplast precursor proteins in plants. The PlantCell, 12, 53-64[26]Mayfield J D, Folta K M, Paul A L, Ferl R J. 2007. The 14-3-3 proteins mu and upsilon influence transition toflowering and early phytochrome response PlantPhysiology, 145, 1692-1702[27]Mayfield J D, Paul A L, Ferl R J. 2012. The 14-3-3 proteins ofArabidopsis regulate root growth and chloroplastdevelopment as components of the photosensorysystem. Journal of Experimental Botany, 63, 3061-3070[28]Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A,MacKintosh C. 1996. Phosphorylated nitrate reductasefrom spinach leaves is inhibited by 14-3-3 proteins andactivated by fusicoccin Current Biology, 6, 1104-1113[29]Muslin A J, Tanner J W, Allen P M, Shaw A S. 1996.Interaction of 14-3-3 with signaling proteins is mediatedby the recognition of phosphoserine. Cell, 84, 889-897[30]Ni Z, Kim E D, Ha M, Lackey E, Liu J, Zhang Y, Sun Q, ChenZ J. 2009. Altered circadian rhythms regulate growthvigour in hybrids and allopolyploids. Nature, 457, 327-331[31]Ni Z, Sun Q X, Liu Z, Wu L, Wang X. 2000. Identification ofa hybridspecific expressed gene encoding novel RNAbindingprotein in wheat seedling leaves usingdifferential display of mRNA. Molecular Genetics andGenomics, 263, 934-938[32]Ni Z, Sun Q X, Wu L, Xie C. 2002. Differential geneexpression between wheat hybrids and their parentalinbreds in primary roots. Acta Botanica Sinica, 44,457-462[33]Olsson A, Svennelid F, Ek B, Sommarin M, Larsson C.1998. A phosphothreonine residue at the C-terminal endof the plasma membrane H+-ATPase is protected by fusicoccin-induced 14-3-3 binding Plant Physiology,118, 551-555[34]Ottmann C, Marco S, Jaspert N, Marcon C, Schauer N,Weyand M, Vandermeeren C, Duby G, Boutry M,Wittinghofer A, et al. 2007. Structure of a 14-3-3coordinated hexamer of the plant plasma membrane H+-ATPase by combining X-ray crystallography andelectron cryomicroscopy. Molecular Cell, 25, 427-440[35]Purwestri Y A, Ogaki Y, Tamaki S, Tsuji H, Shimamoto K.2009. The 14-3-3 protein GF14c acts as a negativeregulator of flowering in rice by interacting with theflorigen Hd3a. Plant and Cell Physiology, 50, 429-438[36]Rittinger K, Budman J, Xu J, Volinia S, Cantley L C, SmerdonS J, Gamblin S J, Yaffe M B. 1999. Structural analysis of14-3-3 phosphopeptide complexes identifies a dual rolefor the nuclear export signal of 14-3-3 in ligand binding.Molecular Cell, 4, 153-166[37]Rosenquist M, Sehnke P, Ferl R J, Sommarin M, Larsson C.2000. Evolution of the 14-3-3 protein family: does thelarge number of isoforms in multicellular organismsreflect functional specificity? Jounal of MolecularEvolution, 51, 446-458[38]Ryu H, Kim K, Cho H, Park J, Choe S, Hwang I. 2007.Nucleocytoplasmic shuttling of BZR1 mediated byphosphorylation is essential in Arabidopsisbrassinosteroid signaling. The Plant Cell, 19, 2749-2762[39]Saghai-Maroof M A, Soliman K M, Jorgensen R A, AllardR W. 1984. Ribosomal DNA space length polymophismsin barley: mendelian inheritance, chromosomal locationsand population dynamics. Proceedings of the NationalAcademy of Sciences of the United States of America,81, 8014-8018[40]Sehnke P C, Rosenquist M, Alsterfjord M, DeLille J,Sommarin M, Larsson C, Ferl R J. 2002. Evolution andisoform specificity of plant 14-3-3 proteins PlantMolecular Biology, 50, 1011-1018[41]Springer N M, Stupar R M. 2007. Allelic variation andheterosis in maize: how do two halves make more thana whole? Genome Research, 17, 264-275[42]Sun Q X, Ni Z F, Liu Z Y. 1999. Differential gene expressionbetween wheat hybrids and their parental inbreds inseedling leaves. Euphytica, 106, 117-123[43]Sun Q X, Wu L M, Ni Z F, Meng F R, Wang Z K, Lin Z. 2004.Differential gene expression patterns in leaves betweenhybrids and their parental inbreds are correlated withheterosis in a wheat diallel cross. Plant Science, 166,651-657[44]Svennelid F, Olsson A, Piotrowski M, Rosenquist M,Ottman C, Larsson C, Oecking C, Sommarin M. 1999.Phosphorylation of Thr-948 at the C terminus of theplasma membrane H+-ATPase creates a binding site forthe regulatory 14-3-3 protein The Plant Cell, 11, 2379-2391[45]Swanson-Wagner R A, DeCook R, Jia Y, Bancroft T, Ji T,Zhao X, Nettleton D, Schnable P S. 2009. Paternaldominance of trans-eQTL influences gene expressionpatterns in maize hybrids. Science, 326, 1118-1120[46]Toroser D, Athwal G S, Huber S C. 1998. Site-specificregulatory interaction between spinach leaf sucrosephosphatesynthase and 14-3-3 proteins FEBS Letters,435, 110-114[47]Wang W F, Diane C, Shakes. 1996. Molecular evolution ofthe 14-3-3 protein family. Jounal of MolecularEvolution, 43, 384-398[48]Wendel J F. 2000. Genome evolution in polyploids. PlantMolecular Biology, 42, 225-249[49]Wu K, Rooney M F, Ferl R J. 1997. The Arabidopsis 14-3-3multigene family. Plant Physiology, 114, 1421-1431[50]Wu L M, Ni Z F, Meng F R, Lin Z, Sun Q X 2003 Cloningand characterization of leaf cDNAs that aredifferentially expressed between wheat hybrids and theirparents. Molecular Genetics and Genomics, 270, 281-286[51]Yaffe M B, Rittinger K, Volinia S, Caron P R, Aitken A,Leffers H, Gamblin S J, Smerdon S J, Cantley L C. 1997.The structural basis for 14-3-3: phosphopeptide bindingspecificity. Cell, 91, 961-971[52]Yao Y Y, Ni Z F, Du J K, Han Z F, Chen Y, Zhang Q B, SunQ X. 2009. Ectopic overexpression of wheat adenosinediphosphate-ribosylation factor, TaARF, increasesgrowth rate in Arabidopsis. Journal of Integrative PlantBiology, 51, 35-44[53]Yao Y Y, Ni Z F, Zhang Y H, Chen Y, Ding Y H, Han Z F, SunQ X. 2005. Identification of differentially expressedgenes in leaf and root between wheat hybrid and itsparental inbreds using PCR-based cDNA subtraction.Plant Molecular Biology, 58, 367-384. |