[1]Aebi H. 1984. Catalase in vitro. Methods in Enzymology, 105, 121-126. [2]Alscher R G, Erturk N, Heath L S. 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331-1341. [3]Anderson M P, Gronwald J W. 1991. Atrazine resistance in a velvetleaf (Abutilon theophrasti) biotype due to enhangced glutathione S-transferase activity. Plant Physiology, 96, 104-109. [4]Asada K. 1992. Ascorbate peroxidases -a hydrogenperoxidescavenging enzyme in plants. Physiologia Plantarum, 85, 235-241. [5]Brown A C, Moss S R, Wilson Z A, Field L M. 2002. An isoleucine to leucine substitution in the ACCase of blackgrass (Alopecurus myosuioides) is associated with resistance to the herbicide sethoxydim. Pesticide Biochemistry and Physiology, 72, 160-168. [6]Brownsey R W, Zhande R, Boone A N. 1997. Isoforms of acetyl-CoA carboxylase: structures, regulatory properties and metabolic functions. Biochemical Society Transactions, 25, 1232-1238. [7]Cocker K M, Moss S R, Coleman J O D. 1999. Multiple mechanisms of resistance to fenoxaprop-p-ethyl in United Kingdom and other European populations of herbicideresistant Alopecurus myosuroides (Black-Grass). Pesticide Biochemistry and Physiology, 65, 169-180. [8]Cummins I, Moss S, Cole D J, Edwards R. 1997. Glutathione transferases in herbicide-resistant and herbicide-susceptible black-grass (Alopecurus myosuroides). Pesticide Science, 51, 244-250. [9]Delye C, Matejicek A, Gasquez J. 2002. PCR-based detection of resistance to acetyl-CoA carboxylase-inhibiting herbicides in black-grass (Alopecurus myosuroides Huds) and ryegrass (Lolium rigidum Gaud). Pest Management Science, 58, 474-478. [10]Delye C, Zhang X Q, Michel S, Matejicek A, Powles S B. 2005. Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiology, 137, 794-806. [11]Devine M D. 1997. Mechanisms of resistance to acetyl-coenzyme A carboxylase inhibitors: a review. Pesticide Science, 51, 259-264. [12]Duke S O. 1996. Herbicide Resistant Crops: agricultural, environmental, economic, regulatory, and technical aspects. Lewis Publishers, Boca Raton. pp. 14-35. [13]Gimenez-Espinosa R, Plaisance K L, Plank D W, Gronwald J W, de Prado R. 1999. Propaquizafop absorption, translocation, metabolism, and effect on acetyl-CoA carboxylase isoforms in chickpea (Cicer arietinum L.). Pesticide Biochemistry and Physiology, 65, 140-150. [14]Hall L M, Moss S R, Powles S B. 1997. Mechanisms of resistance to aryloxyphenoxypropionate herbicides in two resistant biotypes of Alopecurus myosuroides (blackgrass): herbicide metabolism as a cross-resistance mechanism. Pesticide Biochemistry and Physiology, 57, 87-98. [15]Heap I. 2010. The International Survey of Herbicide Resistant Weeds. URL http://www.weedscience.com Heap I, Knight R. 1982. A population of ryegrass tolerant to the herbicide diclofop-methyl. Journal of the Australian Institute of Agricultural Science, 48, 156-157[16]Huang C Y, Chen T B, Wang Y, Sun B H. 2000. Weed survey of soybean field in north region of Heilongjiang Province. Soybean Science, 4, 341-345. (in Chinese) [17]Konishi T, Sasaki Y. 1994. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Proceedings of the National Academy of Sciences of the USA, 91, 3598-3601. [18]Kahkonen M P, Hopia A I, Vuorela H J, Rauha J P, Pihlaja K, Kujala T S, Heinonen M. 1999. Antioxidant activity of plant extracts containing phenolic compounds. Journal of Agricultural and Food Chemistry, 47, 3954-3962. [19]Kuk Y I, Wu J R, Derr J F, Hatzios K K. 1999. Mechanism of fenoxaprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pesticide Biochemistry and Physiology, 64, 112-123. [20]Letouze A, Gasquez J. 1999. A rapid reliable test for screening aryloxypropionic acid resistance within Alopecurus myosuroides and Lolium spp. population. Weed Research, 39, 37-48. [21]Liu W J, Harrison D K, Chalupska D, Gornichi P, Odonnell C C, Adkins S W, Haselkorn R, Williams R R. 2007. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proceedings of the National Academy of Sciences of the USA, 104, 3627-3632. [22]Menendez J, de Prado R. 1996. Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides. Pesticide Biochemistry and Physiology, 56, 123-133. Mittler R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405-410. [23]Passardi F, Penel C, Dunand C. 2004. Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science, 9, 534-540. [24]Peixoto F, Alves-Fernandes D, Santos D, Fontainhas-Fernandes A. 2006. Toxicological effects of oxyfluorfen on oxidative stress enzymes in tilapia Oreochromis niloticus. Pesticide Biochemistry and Physiology, 85, 91-96. [25]Powles S B, Holtum J A M. 1994. Herbicide Resistance in Plants: Biology and Biochemistry. Lewis Publishers, Boca Raton, Fla. pp. 141-169. [26]Powles S B, Shaner D L. 2001. Herbicide Resistance and World Grains. CRC Press, Boca Raton. pp. 23-60. [27]de Prado R, Osuna M D, Fischer A J. 2004. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe. Weed Science, 52, 506-512. [28]de Prado J L, Osuna M D, Shimabukuro R H, de Prado R. 1998. Biochemical and physiological resistance mechanisms to diclofop-methyl in Lolium rigidum. Proceedings of the 50th International Symposium on Crop Protection, 63, 681-689. [29]de Prado R, de Prado J L, Osuna M D, Taberner A, Heredia A. 2001. Is diclofop-methyl resistance in Lolium rigidum associated with a lack of penetration? Proceedings of the British Crop Protection Conference-Weeds, 8A, 545-550. [30]Reade J P H, Cobb A H. 1999. Purification, characterization and comparison of glutathione S-transferases from black-grass (Alopecurus myosuroides Huds) biotypes. Pesticide Science, 55, 993-999. [31]Song N H, Yang Z M, Zhou L X, Wu X, Yang H. 2006. Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestivum. Journal of Environment Sciences, 18, 101-108. Song N H, Yin X L, Chen G F, Yang H. 2007. Biological responses of wheat (Triticum aestivum) plants to the herbicide chlorotoluron in soils. Chemosphere, 68, 1779-1787. [32]Tal A, Rubin B. 2004. Molecular characterization and inheritance of resistance to ACCase-inhibiting herbicides in Lolium rigidum. Pest Management Science, 60, 1013-1018. [33]Tal A, Kotoula-Syka E, Rubin B. 2000. Seed-bioassay to detect grass weeds resistant to acetyl coenzyme A carboxylase inhibiting herbicides. Crop Protection, 19, 467-472. [34]Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64, 178-189. [35]Vila-Aiub M M, Neve P, Powles S B. 2005. Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytologist, 167, 787-796. [36]Wang J X, Zhao F Y, Xu P L, Tian Y C. 2005. Development of transgenic oilseed plants resistant to glyphosate and insects. Acta Genetica Sinica, 32, 1293-1300. (in Chinese) [37]Wang S H, Yang Z M, Yang H, Lu B, Li S Q, Lu Y P. 2004. Copper induced stress and antioxidative responses in roots of Brassica juncea L. Botanical Bulletin of Academia Sinica, 45, 203-212. [38]Wang Y S, Yang Z M. 2005. Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L. Plant and Cell Physiology, 46, 1915-1923. [39]White G M, Moss S R, Karp A. 2005. Differences in the molecular basis of resistance to the cyclohexanedione herbicide sethoxydim in Lolium multiflorum. Weed Research, 45, 440-448. [40]Wu Y X, von Tiedemann A. 2002. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley (Hordeum vulgare L.) exposed to ozone. Environmental Pollution, 116, 37-47. [41]Zagnitko O, Jelenska J, Tevzadze G, Haselkorn R, Gornicki P. 2001. A n i s o l e u c i n e / l e u c i n e r e s i d u e i n t h e carboxylthransferase domain of acetyl-CoA carboxylase is critical for interaction with aryloxyphenoxypropionate and cyclohexanedione inhibitors. Proceedings of the National Academy of Sciences of the USA, 98, 6617-6622. [42]Zhang H, Tweel B, Tong L. 2004. Molecular basis for the inhibition of the carboxyltransferase domain of acetyl-coenzyme-A carboxylase by haloxyfop and diclofop. Proceedings of the National Academy of Sciences of the USA, 101, 5910-5915. [43]Zhang J X, Kirkham M B. 1994. Drought-stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant and Cell Physiology, 35, 785-791. [44]Zhang X Q, Powles S B. 2006a. Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytologist, 172, 636-645. [45]Zhang X Q, Powles S B. 2006b. The molecular bases for resistance to acetyl co-enzyme A carboxylase (ACCase) inhibiting herbicide in two target-based resistant biotypes of annual ryegrass (Lolium rigidum). Planta, 223, 550-557. [46]Zhou Z S, Huang S Q, Guo K, Mehta S K, Zhang P C, Yang Z M. 2007. Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. Journal of Inorganic Biochemistry, 101, 1-9. |