[1]Arora S, Anubhuti. 2006. Role of neuropeptides in appetite regulation and obesity-a review. Neuropeptides, 40, 375-401. [2]Baghbanzadeh A, Babapour V. 2007. Glutamate ionotropic and metabotropic receptors affect feed intake in broiler cockerels. Journal of Veterinary Research, 62, 125-129. [3]Bartell S M, Batal A B. 2007. The effect of supplemental glutamine on growth performance, development of the gastrointestinal tract, and humoral immune response of broilers. Poultry Science, 86, 1940-1947. [4]Bisaga A, Danysz W, Foltin R W. 2008. Antagonism of glutamatergic NMDA and mGluR5 receptors decreases consumption of food in baboon model of binge-eating disorder. European Neuropsychopharmacology, 18, 794-802. [5]Blouet C, Jo Y H, Li X, Schwartz G J. 2009. Mediobasal hypothalamic leucine sensing regulates food intake through activation of a hypothalamus-brainstem circuit. The Journal of Neuroscience, 29, 8302-8311. [6]Blouet C, Schwartz G J. 2010. Hypothalamic nutrient sensing in the control of energy homeostasis. Behavioural Brain Research, 209, 1-12. [7]van den Berg C J, Garfinkel D. 1971. A stimulation study of brain compartments. Metabolism of glutamate and related substances in mouse brain. The Biochemical Journal, 123, 211-218. [8]Cerda-Reverter J M, Larhammar D. 2000. Neuropeptide Y family of peptides: Structure, anatomical expression, function, and molecular evolution. Biochemistry and Cell Biology, 78, 371-392. [9]Chalmers D T, Lovenberg T W, Grigoriadis D E, Behan D P, de Souza E B. 1996. Corticotrophin-releasing factor receptors: From molecular biology to drug design. Trends in Pharmacological Sciences, 17, 166-172. [10]Cline M A, Nandar W, Smith M L, Pittman B H, Kelly M, Rogers J O. 2008. Amylin causes anorexigenic effects via the hypothalamus and brain stem in chicks. Regulatory Peptides, 146, 140-146. [11]Coll A P. 2007. Effects of pro-opiomelanocortin (POMC) on food intake and body weight: Mechanisms and therapeutic potential? Clinical Science (London, England: 1979), 113, 171-182. [12]Cone R D. 1999. The central melanocortin system and energy homeostasis. Trends in Endocrinology and Metabolism, 10, 211-216. [13]Danbolt N C. 2001. Glutamate uptake. Progress in Neurobiology, 65, 1-105. [14]Davis J L, Masuoka D T, Gerbrandt L K, Cherkin A. 1979. Autoradiographic distribution of L-proline in chicks after intracerebral injection. Physiology and Behavior, 22, 693-695. [15]Denbow D M. 1999. Food intake regulation in birds. Journal of Experimental Zoology, 283, 333-338. [16]Furuse M. 2002. Central regulation of food intake in the neonatal chick. Animal Science Journal, 73, 83-94. [17]Gardiner J V, Kong W M, Ward H, Murphy K G, Dhillo W S, Bloom S R. 2005. AAV mediated expression of antisense neuropeptide Y cRNA in the arcuate nucleus of rats results in decreased weight gain and food intake. B i o c h e m i c a l a n d B i o p h y s i c a l R e s e a r c h Communications, 327, 1088-1093. [18]Heinrichs S C, Cole B J, Pich E M, Menzaghi F, Koob G F, Hauger R L. 1992. Endogenous corticotropin-releasing factor modulates feeding induced by neuropeptide Y or a tail-pinch stressor. Peptides, 13, 879-884. [19]Hulsey M G, Pless C M, White B D, Martin R J. 1995. ICV administration of anti-NPY antisense oligonucleotide: effects on feeding behavior, body weight, peptide content and peptide release. Regulatory Pepttides, 59, 207-214. [20]Izumi T, Kawamura K, Ueda H, Bungo T. 2004. Central administration of leucine, but not isoleucine and valine, stimulates feeding behavior in neonatal chicks. Neuroscience Letters, 354, 166-168. [21]Kurauchi I, Asechi M, Tachibana T, Han L, Hayamizu K, Denbow D M, Furuse M. 2006. Intracerebroventricular injection of L-alanine induces a sedative effect under an acute stressful condition in neonatal chicks. The Journal of Poultry Science, 43, 384-387. [22]Kurauchi I, Yamane H, Tsuneyoshi Y, Denbow D M, Furuse M. 2009. Central L-alanine reduces energy expenditure with a hypnotic effect under an acute stressful condition in neonatal chicks. Amino Acids, 36, 131-135. [23]Lenard N R, Berthoud H R. 2008. Central and peripheral regulation of food intake and physical activity: Pathways and genes. Obesity, 16, S11-S22. [24]Levine A S, Rogers B, Kneip J, Grace M, Morley J E. 1983. Effect of centrally administered corticotropin releasing factor (CRF) on multiple feeding paradigms. Neuropharmacology, 22, 337-339. [25]Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta c(t)) method. Methods, 25, 402-408. [26]Luquet S, Perez F A, Hnasko T S, Palmiter R D. 2005. NPY/ AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science, 310, 683-685. [27]Melone M, Quagliano F, Barbaresi P, Varoqui H, Erickson J D, Conti F. 2004. Localization of the glutamine transporter SNAT1 in rat cerebral cortex and neighboring structures, with a note on its localization in human cortex. Cerebral Cortex, 14, 562-574. [28]Nguyen A D, Herzog H, Sainsbury A. 2011. Neuropeptide Y and peptide YY: important regulators of energy metabolism. Current Opinion in Endocrinology, Diabetes, and Obesity, 18, 56-60. [29]Peng L A, Schousboe A, Hertz L. 1991. Utilization of alphaketoglutarate as a precursor for transmitter glutamate in cultured cerebellar granule cells. Neurochemical Research, 16, 29-34. [30]Reddy V M, Meharg S S, Ritter S. 1986. Dose-related stimulation of feeding by systemic injections of monosodium glutamate. Physiology & Behavior, 38, 465-469. [31]Richards M P. 2003. Genetic regulation of feed intake and energy balance in poultry. Poultry Science, 82, 907-916. [32]Richards M P, Proszkowiec-Weglarz M. 2007. Mechanisms regulating feed intake, energy expenditure, and body weight in poultry. Poultry Science, 86, 1478-1490. [33]Schousboe A, Sonnewald U, Waagepetersen H S. 2003. Differential roles of alanine in GABAergic and glutamatergic neurons. Neurochemistry International, 43, 311-315. [34]Schwartz M W, Woods S C, Porte Jr D, Seeley R J, Baskin D G. 2000. Central nervous system control of food intake. Nature, 404, 661-671. [35]Stanley B G, Leibowitz S F. 1984. Neuropeptide Y: Stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sciences, 35, 2635-2642. [36]Taati M, Nayebzadeh H, Zendehdel M. 2011. The effects of DL-AP5 and glutamate on ghrelin-induced feeding behavior in 3-h food-deprived broiler cockerels. Journal of Physiology and Biochemistry, 67, 217-223. [37]Tachibana T, Mori M, Khan M S, Ueda H, Sugahara K, Hiramatsu K. 2008. Central administration of galanin stimulates feeding behavior in chicks. Comparative Biochemistry and Physiology (Part A, Molecular and Integrative Physiology), 151, 637-640. [38]Tanaka C, Asakawa A, Ushikai M, Sakoguchi T, Amitani H, Terashi M, Cheng K, Chaolu H, Nakamura N, Inui A. 2009. Comparison of the anorexigenic activity of CRF family peptides. Biochemical and Biophysical Research Communications, 390, 887-891. [39]Tsacopoulos M, Veuthey A L, Saravelos S G, Perrottet P, Tsoupras G. 1994. Glial cells transform glucose to alanine, which fuels the neurons in the honeybee retina. The Journal of Neuroscience, 14, 1339-1351. [40]Walther C, Morl K, Beck-Sickinger A G. 2011. Neuropeptide Y receptors: Ligand binding and trafficking suggest novel approaches in drug development. Journal of Peptide Science, 17, 233-246. [41]Wu G, Bazer F W, Johnson G A, Knabe D A, Burghardt R C, Spencer T E, Li X L, Wang J J. 2010. Important roles for L-glutamine in swine nutrition and production. Journal of Animal Science, 89, 2017-2030. [42]Yi G F, Allee G L, Knight C D, Dibner J J. 2005. Impact of glutamine and oasis hatchling supplement on growth performance, small intestinal morphology, and immune response of broilers vaccinated and challenged with eimeria maxima. Poultry Science, 84, 283-293. [43]Zeni L A, Seidler H B, de Carvalho N A, Freitas C G, Marino-Neto J, Paschoalini M A. 2000. Glutamatergic control of food intake in pigeons: Effects of central injections of glutamate, NMDA, and AMPA receptor agonists and antagonists. Pharmacology, Biochemistry, and Behavior, 65, 67-74. [44]Zwingmann C, Richter-Landsberg C, Brand A, Leibfritz D. 2000. NMR spectroscopic study on the metabolic fate of [3-(13)C]alanine in astrocytes, neurons, and cocultures: implications for glia-neuron interactions in neurotransmitter metabolism. Glia, 32, 286-303. [45]Zwingmann C, Richter-Landsberg C, Leibfritz D. 2001. 13C isotopomer analysis of glucose and alanine metabolism reveals cytosolic pyruvate compartmentation as part of energy metabolism in astrocytes. Glia, 34, 200-212. |