期刊
出版年
关键词
结果中检索
(((ZHAO Su-mei[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
Generation and Analysis of Expressed Sequence Tags (ESTs) from Muscle Full-Length cDNA Library of Wujin Pig
ZHAO Su-mei, LIU Yong-gang, PAN Hong-bing, ZHANG Xi, GE Chang-rong, JIA Jun-jing , GAO Shi-zheng
Journal of Integrative Agriculture 2014, 13 (
2
): 378-386. DOI:
10.1016/S2095-3119(13)60414-1
摘要
(
1521
)
PDF
可视化
收藏
Porcine skeletal muscle genes play a major role in determining muscle growth and meat quality. Construction of a full-length cDNA library is an effective way to understand the expression of functional genes in muscle tissues. In addition, novel genes for further research could be identified in the library. In this study, we constructed a full-length cDNA library from porcine muscle tissue. The estimated average size of the cDNA inserts was 1 076 bp, and the cDNA fullness ratio was 86.2%. A total of 1 058 unique sequences with 342 contigs (32.3%) and 716 singleton (67.7%) expressed sequence tags (EST) were obtained by clustering and assembling. Meanwhile, 826 (78.1%) ESTs were categorized as known genes, and 232 (21.9%) ESTs were categorized as unknown genes. 65 novel porcine genes that exhibit no identity in the TIGR gene index of Sus scrofa and 124 full-length sequences with unknown functions were deposited in the dbEST division of GenBank (accession numbers: EU650784-EU650788, GE843306, GH228978-GH229100). The abundantly expressed genes in porcine muscle tissue were related to muscle fiber development, energy metabolism and protein synthesis. Gene ontology analysis showed that sequences expressed in porcine muscle tissue contained a high percentage of binding activity, catalytic activity, structural molecule activity and motor activity, which involved mainly in metabolic, cellular and developmental process, distributed mainly in intracellular region. The sequence data generated in this study would provide valuable information for identifying porcine genes expressed in muscle tissue and help to advance the study on the structure and function of genes in pigs.
参考文献
|
相关文章
|
多维度评价
Select
2.
Muscle Biological Characteristics of Differentially Expressed Genes in Wujin and Landrace Pigs
XU Hong, HUANG Ying, LI Wei-zhen, YANG Ming-hua, GE Chang-rong, ZHANG Xi, LI Liu-an, GAO Shi-zheng , ZHAO Su-mei
Journal of Integrative Agriculture 2014, 13 (
10
): 2236-2242. DOI:
10.1016/S2095-3119(13)60605-X
摘要
(
1349
)
PDF
可视化
收藏
The biological chemistry would be responsible for the meat quality. This study tried to investigate the transcript expression profile and explain the characteristics of differentially expressed genes between the Wujin and Landrace pigs. The results showed that 526 differentially expressed genes were found by comparing the transcript expression profile of muscle tissue between Wujin and Landrace pigs. Among them, 335 genes showed up-regulations and 191 genes showed down-regulations in Wujin pigs compared with the Landrace pigs. Gene ontology (GO) analysis indicated that the differentially expressed genes were clustered into three groups involving in protein synthesis, energy metabolism and immune response. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis found that these differentially expressed genes participated in protein synthesis metabolism, energy metabolism and immune response pathway. The Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of protein function and protein domains function also confirmed that differentially expressed genes belonged to protein synthesis, energy metabolism and immune response. Genes related protein synthesis metabolism pathway in Landrace was higher than in Wujin pigs. However, differentially expressed genes related energy metabolism and immune response was up-regulated in Wujin pigs compared with Landrace pigs. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. These suggested that the genes related to protein synthesis, energy metabolism and immune response would contribute to the growth performance, meat quality as well as anti-disease capacity.
参考文献
|
相关文章
|
多维度评价