期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. A genome scan of recent positive selection signatures in three sheep populations
ZHAO Fu-ping, WEI Cai-hong, ZHANG Li, LIU Jia-sen, WANG Guang-kai, ZENG Tao, DU Li-xin
Journal of Integrative Agriculture    2016, 15 (1): 162-174.   DOI: 10.1016/S2095-3119(15)61080-2
摘要2148)      PDF    收藏
Domesticated sheep have been exposed to artificial selection for the production of fiber, meat, and milk as well as to natural selection. Such selections are likely to have imposed distinctive selection signatures on the sheep genome. Therefore, detecting selection signatures across the genome may help elucidate mechanisms of selection and pinpoint candidate genes of interest for further investigation. Here, detection of selection signatures was conducted in three sheep breeds, Sunite (n=66), German Mutton (n=159), and Dorper (n=93), using the Illumina OvineSNP50 Genotyping BeadChip array. Each animal provided genotype information for 43 273 autosomal single nucleotide polymorphisms (SNPs). We adopted two complementary haplotype-based statistics of relative extended haplotype homozygosity (REHH) and the cross-population extended haplotype homozygosity (XP-EHH) tests. In total, 707, 755, and 438 genomic regions subjected to positive selection were identified in Sunite, German Mutton, and Dorper sheep, respectively, and 42 of these regions were detected using both REHH and XP-EHH analyses. These genomic regions harbored many important genes, which were enriched in gene ontology terms involved in muscle development, growth, and fat metabolism. Fourteen of these genomic regions overlapped with those identified in our previous genome-wide association studies, further indicating that these genes under positive selection may underlie growth developmental traits. These findings contribute to the identification of candidate genes of interest and aid in understanding the evolutionary and biological mechanisms for controlling complex traits in Chinese and western sheep.
参考文献 | 相关文章 | 多维度评价
2. Genetic parameters for somatic cell score and production traits in the first three lactations of Chinese Holstein cows
ZHAO Fu-ping, GUO Gang, WANG Ya-chun, GUO Xiang-yu, ZHANG Yuan, DU Li-xin
Journal of Integrative Agriculture    2015, 14 (1): 125-130.   DOI: 10.1016/S2095-3119(14)60758-9
摘要1666)      PDF    收藏
The objectives of this study were to estimate genetic parameters of lactation average somatic cell scores (LSCS) and examine genetic associations between LSCS and production traits in the first three lactations of Chinese Holstein cows using single-parity multi-trait animal model and multi-trait repeatability animal model. There were totally 273 605 lactation records of Chinese Holstein cows with first calving from 2001 to 2012. Heritability estimates for LSCS ranged from 0.144 to 0.187. Genetic correlations between LSCS and 305 days milk, protein percentage and fat percentage were –0.079, –0.082 and –0.135, respectively. Phenotypic correlation between LSCS and 305 days milk yield was negative (–0.103 to –0.190). Genetic correlation between 305 days milk and fat percentage or protein percentage was highly negative. Genetic correlation between milk fat percentage and milk protein percentage was highly favorable. Heritabilities of production traits decreased with increase of parity, whereas heritability of LSCS increased with increase of parity.
参考文献 | 相关文章 | 多维度评价
3. StimulationStudyofGenePyramiding inAnimals byMarker-AssistedSelection
ZHAO Fu-ping, ZHANG Qin
Journal of Integrative Agriculture    2012, 12 (11): 1871-1876.   DOI: 10.1016/S1671-2927(00)8722
摘要1222)      PDF    收藏
This gene pyramiding strategy is based on the idea of efficiently pyramiding genes of interest by crosses and selection to obtain a population with favorable alleles from different breeds or lines, which is called an ideal population. We investigate impacts of some factors on the pyramiding efficiencies by simulation. These factors include selection strategies (the breeding value selection, the molecular scores selection and the index selection), proportion selected (2, 10 and 20%), recombination rates between adjacent target genes (0.1, 0.3 and 0.5) and different mating types (the random mating and the positive assortative mating avoiding sib mating). The results show that: (1) The more recombination rate and the lower proportion male selected, the better pyramiding efficiency; (2) the ideal population is obtained via various selection strategies, while different selection strategies are suitable for different breeding objectives. From the perspective of pyramiding target genes merely, the molecular scores selection is the best one, for the purpose of pyramiding target genes and recovering genetic background of the target trait, the index selection is the best one, while from the saving cost point of view, the breeding value selection is the best one; (3) the positive assortative mating is more efficient for gene pyramiding compared with the random mating in the terms of the number of generations of intercross for getting the ideal population.
参考文献 | 相关文章 | 多维度评价