期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. QTL Mapping for Dough Mixing Characteristics in a Recombinant Inbred Population Derived from a Waxy×Strong Gluten Wheat (Triticum aestivum L.)
ZHENG Fei-fei, DENG Zhi-ying, SHI Cui-lan, ZHANG Xin-ye , TIAN Ji-chun
Journal of Integrative Agriculture    2013, 12 (6): 951-961.   DOI: 10.1016/S2095-3119(13)60315-9
摘要1580)      PDF    收藏
Protein and starch are the most important traits in determining processing quality in wheat. In order to understand the genetic basis of the influence of Waxy protein (Wx) and high molecular weight gluten subunit (HMW-GS) on processing quality, 256 recombinant inbred lines (RILs) derived from the cross of waxy wheat Nuomai 1 and Gaocheng 8901 were used as mapping population. DArT (diversity arrays technology), SSR (simple sequence repeat), HMW-GS, and Wx markers were used to construct the molecular genetic linkage map. QTLs for mixing peak time (MPT), mixing peak value (MPV), mixing peak width (MPW), and mixing peak integral (MPI) of Mixograph parameters were evaluated in three different environments. The genetic map comprised 498 markers, including 479 DArT, 14 SSR, 2 HMW-GS, and 3 Wx protein markers, covering 4 229.7 cM with an average distance of 9.77 cM. These markers were identified on 21 chromosomes. Eighteen additive QTLs were detected in three different environments, which were distributed on chromosomes 1A, 1B, 1D, 4A, 6A, and 7D. QMPT-1D.1 and QMPT-1D.2 were close to the Glu-D1 marker accounting for 35.2, 22.22 and 36.57% of the phenotypic variance in three environments, respectively. QMPV-1D and QMPV-4A were detected in all environments, and QMPV-4A was the nearest to Wx-B1. One minor QTL, QMPI-1A, was detected under three environments with the genetic distances of 0.9 cM from the nearest marker Glu-A1, explaining from 5.31 to 6.67% of the phenotypic variance. Three pairs of epistatic QTLs were identified on chromosomes 2D and 4A. Therefore, this genetic map is very important and useful for quality trait related QTL mapping in wheat. In addition, the finding of several major QTLs, based on the genetic analyses, further suggested the importance of Glu-1 loci on dough mixing characteristics.
参考文献 | 相关文章 | 多维度评价
2. Effects of Papain Hydrolysis on the Pasting Properties of Wheat Flour
CHEN Jian-sheng, TIAN Ji-chun, DENG Zhi-ying, ZHANG Ying-xiang, FENG Shou-li, YAN Zuo-chen, ZHANG Xin-ye, YUAN Hui-qing
Journal of Integrative Agriculture    2012, 12 (12): 1948-1957.   DOI: 10.1016/S1671-2927(00)8731
摘要1594)      PDF    收藏
As one of the most effective enzymatic modification methods of protein, papain hydrolysis is applied widely in food production, accompanying starch pasting frequently in order to improve industrial quality. Effects of the papain hydrolysis on flour pasting properties were investigated in five papain/flour concentrations and five time-treatments. The structure of starch and protein networks in slurry was investigated under microscope before and after pasting. Results showed that papain hydrolysis influenced the pasting properties of wheat flour significantly through affecting structural characteristics, amylase activity and exothermic transition, especially during the early stage of hydrolysis. Peak viscosity, trough, final, integral area, and setback significantly decreased along with the increasing concentration of papain. Both hydrolysis time and concentration of papain had obviously effect on the breakdown. Pasting temperature and pasting time increased significantly with the enhancement of papain concentration. Hydrolysis time exerted minor effect on the pasting temperature and pasting time. The average peak time was slightly prolonged by lower concentration of papain, otherwise slightly shortened by higher concentration.
参考文献 | 相关文章 | 多维度评价