SrUGT76G1对于合成优质甜菊糖苷至关重要,也是目前甜菊中研究最为深入的糖基转移酶基因,但是关于它的转录调控机制目前还不甚了解。本研究通过酵母单杂交手段鉴定得到了一个SrUGT76G1的上游调控因子SrMYB1。SrMYB1属于典型的R2R3类型的MYB类转录因子,其定位在细胞核并且具有转录激活活性。SrMYB1在花中的表达量较高而在叶片中较低。酵母单杂(Y1H)和凝胶阻滞(EMSA)实验证实SrMYB1可以结合在SrUGT76G1启动子的+50~-141区域即F4-3区段。进一步研究发现在烟草表皮细胞和甜菊愈伤组织中SrMYB1均可显著抑制SrUGT76G1的表达。综上所述,本研究不但发现了一个SrUGT76G1的潜在上游调控因子并且丰富了甜菊中糖苷代谢途径的调控网络。
植物细胞具有全能性,在合适的培养条件下,已分化的植物细胞可以通过脱分化和再分化过程产生新的植物组织和器官。在这一过程中,生长素促进细胞生长与分裂,诱导愈伤组织的形成;细胞分裂素促进细胞的分裂并诱导不定芽的形成。硝酸盐不仅是植物生长发育必需的营养元素,还作为信号分子激活一系列基因的表达,进而影响植物生长发育。植物体内的硝酸盐信号通路还能够调控影响生长素的生物合成和运输,调控植物侧根的生长发育。MdNLP7是硝酸盐响应的主要调节因子,参与了植物体内硝酸盐的吸收和转运。在本研究中,将MdNLP7转录因子在拟南芥中异位表达,发现MdNLP7蛋白可以调控根外植体的再生;进一步的研究结果表明,MdNLP7介导了中柱鞘细胞分裂的起始。在愈伤组织形成的过程中,MdNLP7可以上调生长素合成和转运相关基因的表达,并通过影响生长素的分布来实现对根外植体形成的调控过程,进而调控硝酸盐介导的根外植体再生。
甜菊叶片中的甜菊糖苷由于具有高甜度和低热量的特点而凸显价值,这推动了甜叶菊商业化种植的发展。优化施肥管理可以有效提高甜菊糖苷的生产力,但是目前关于钾肥与甜菊糖苷生产之间的关系尚不明确。本研究通过盆栽试验揭示了甜菊缺钾对叶片甜菊糖苷合成的影响并探索了其潜在机制。结果表明,在高钾土壤背景下,与常规施钾相比,不施钾肥对甜菊生物量没有显著影响。然而,不施钾肥显著降低了叶片中甜菊糖苷的含量以及甜菊糖苷合成相关基因的表达水平。在缺钾条件下,叶片中不同糖组分含量显著降低,糖代谢相关酶的活性受到抑制。此外,通过对甜菊幼苗叶片进行蔗糖喷施可以有效减弱缺钾造成的甜菊糖苷抑制作用。研究结果还揭示了甜菊叶片中蔗糖、葡萄糖与甜菊糖苷含量之间的显著正相关关系。综上所述,我们的研究结果表明缺钾会抑制甜菊叶片中甜菊糖苷合成,而这种抑制作用是由叶片糖代谢介导的。我们的发现为进一步提高甜菊糖苷的生产潜力提供了新的见解。
突变效率和孵化率是影响基因编辑昆虫构建的两个关键因素。在CRISPR/Cas9介导的dsLmRNase2-/-突变体蝗虫构建过程中,我们发现注射与卵囊接触20 min的鞣化卵比未鞣化的新鲜卵获得突变体飞蝗的效率更高。然而,鞣化和未鞣化卵产生的dsLmRNase2突变遗传到G1代的效率相似。此外,发育正常的鞣化和未鞣化的G0代卵和成虫的有效突变率没有显著差异,表明鞣化并不影响CRISPR/Cas9介导的突变效率。同时,我们发现飞蝗合胞体分裂期比鞣化时间长,为显微注射的鞣化卵和未鞣化卵提供了足够的时间窗口以完成有效地基因编辑。我们进一步发现,鞣化卵显微注射后感染率较低进而表现出更高的孵化率。抗压和超微结构分析表明,鞣化卵具有压缩的卵壳,能够承受较高的外部压力。综上所述,鞣化卵具有更强的防御能力以提高孵化率,并保持了更高的基因组突变效率,为开发CRISPR/Cas9介导的飞蝗突变体构建提供了一种优化的技术方法。