期刊
出版年
关键词
结果中检索
(((ZHANG Qing-wen[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
Using side-dressing technique to reduce nitrogen leaching and improve nitrogen recovery efficiency under an irrigated rice system in the upper reaches of Yellow River Basin, Northwest China
ZHANG Ai-ping, GAO Ji, LIU Ru-liang, ZHANG Qing-wen, CHEN Zhe, YANG Shi-qi, YANG Zheng-li
Journal of Integrative Agriculture 2016, 15 (
1
): 220-231. DOI:
10.1016/S2095-3119(14)60952-7
摘要
(
1936
)
PDF
可视化
收藏
The excessive nitrogen (N) fertilizer input coupled with flood irrigation might result in higher N leaching and lower nitrogen recovery efficiency (NRE). Under an intensive rice system in the Ningxia irrigation region, China, environmental friendly N management practices are heavily needed to balance the amount of N input for optimum crop production while minimize the nitrogen loss. The objective of this study was to determine the influences of side-dressing (SD) technique in mechanical transplanting systems on the NRE, N leaching losses and rice yield in anthropogenic-alluvial soil during two rice growing seasons (2010-2011). Four fertilizer N treatments were established, including conventional urea rate (CU, 300 kg ha–1 yr–1); higher SD of controlled-release N fertilizer rate (SD1, 176 kg ha–1 yr–1); lower SD of controlled-release N fertilizer rate (SD2, 125 kg ha–1 yr–1); and control (CK, no N fertilizer). Field lysimeters were used to quantify drainage from undisturbed soil during six rice growing stages. Meanwhile, the temporal variations of total nitrigen (TN), NO3 –-N, and NH4 +-N concentrations in percolation water were examined. The results showed that SD1 substantially improved NRE and reduced N leaching losses while maintaining rice yields. Across two years, the averaged NRE under SD1 treatment increased by 25.5% as relative to CU, but yet the rice yield was similar between two treatments. On average, the nitrogen loss defined as TN, NH4 +-N, and NO3 –-N under the SD1 treatment reduced by 27.4, 37.2 and 24.1%, respectively, when compared with CU during the study periods. Although the SD2 treatment could further reduce N leaching loss to some extent, this technique would sharply decline rice yield, with the magnitude of as high as 21.0% relative to CU treatment. Additionally, the average NRE under SD2 was 11.2% lower than that under SD1 treatment. Overall, the present study concluded that the SD technique is an effective strategy to reduce N leaching and increase NRE, thus potentially mitigate local environmental threat. We propose SD1 as a novel alternative fertilizer technique under an irrigated rice-based system in Ningxia irrigation region when higher yields are under consideration.
参考文献
|
相关文章
|
多维度评价
Select
2.
Identification of Molecular Markers for a Aphid Resistance Gene in Sorghum and Selective Efficiency Using These Markers
CHANG Jin-hua, CUI Jiang-hui, XUE Wei, ZHANG Qing-wen
Journal of Integrative Agriculture 2012, 12 (
7
): 1086-1092. DOI:
10.1016/S1671-2927(00)8633
摘要
(
1430
)
PDF
可视化
收藏
In this study, an F2 segregated population obtained by hybridization between the aphid-sensitive sorghum strain Qiansan and aphid-resistant cultivar Henong 16 was used to establish an aphid-resistant pool and an aphid-sensitive pool. 192 pairs of AFLP (amplified fragment length polymorphism) marker primers were screened in these pools using BSA (bulked segregant analysis). Three pairs of EcoR I-CTG/Mse I-CCT, EcoR I-CTG/Mse I-CAT, and EcoR I-AGT/Mse I-CCC showed linkage with aphis resistance. EcoR I-CTG/Mse I-CCT-475, EcoR I-CTG/Mse I-CAT-390, and EcoR I-AGT/Mse I-CCC- 350 (E42/M52-350) were mapped within 6, 10, and 13 cM distances with the aphid-resistant gene by using Mapmaker 3.0 software. The bands amplified by EcoR I-CTG/Mse I-CCT-475 and EcoR I-CTG/Mse I-CAT-390 were extracted, cloned, and sequenced. Specific primers of SCAR (sequence characterized amplified regions) were then designed from these bands. A specific band of 300 bp was amplified by a pair of SCAR primers designed based on the sequence obtained from the EcoR I-CTG/Mse I-CAT-390 marker. The SCAR marker was named SCA50. The marker was used to detect the F2, BC1, and F2:3 populations. The selective efficiency was 86.8, 91.1, and 86.3% in the BC1, F2, and F2:3 populations, respectively. The average selective efficiency was 88.2%.
参考文献
|
相关文章
|
多维度评价