期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 播期和生态点对半冬小麦产量和温辐射资源的影响
ZHANG Zhen-zhen, CHENG Shuang, FAN Peng, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, XU Fang-fu, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
Journal of Integrative Agriculture    2023, 22 (5): 1366-1380.   DOI: 10.1016/j.jia.2022.08.029
摘要225)      PDF    收藏

研究播期和生态点对半冬小麦产量的影响对小麦产量提高具有重要意义。本研究旨在探讨稻-麦轮作条件下播期和生态点对小麦产量以及相关气候资源的影响。试验以两个半冬性小麦品种为材料,分别在东海县和建湖县开展,共设置6个播期。第一播期(S1)基本苗300×104 ha-1每推迟一个播期(S2-S6)基本苗分别增加10%。结果表明,播种期的推迟,导致整个生育期天数缩短、有效积温和累计太阳辐射降低。S2~S6产量较S1分别降低了0.22~0.31t ha-1、0.5~0.78t ha-1、0.86~0.98t ha-1、1.14~1.38t ha-1和1.36~1.59t ha-1。同一播期,随着生态点北移,生育天数增加,日均温和有效积温降低,累积辐射增加。结果表明,相同播期,东海县的产量比建湖县低0.01 ~ 0.39 t hm - 2。有效积温、累积辐射与产量呈显著正相关。日均温与产量呈显著负相关。籽粒产量下降的主要原因由于日均温的升高和有效积温的降低导致穗粒数和千粒重下降引起的。

参考文献 | 相关文章 | 多维度评价
2. JIA-2021-1716 适当增加基本苗提高麦秸还田后多功能机械旱直播水稻产量
TIAN Jin-yu, LI Shao-ping, CHENG Shuang, LIU Qiu-yuan, ZHOU Lei, TAO Yu, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
Journal of Integrative Agriculture    2023, 22 (2): 400-416.   DOI: 10.1016/j.jia.2022.08.064
摘要282)      PDF    收藏
多功能机械旱直播水稻因其高效、经济和绿色等特点受到越来越多的关注,然而这类水稻在麦秸秆还田后由于其生长受到约束会导致减产。为此于2016和2018年在典型稻麦轮作区选取代表性优质水稻品种和多功能机械开展田间试验,设置基本苗100、190、280、370和460 m−2(分别为B1、B2、B3、B4和B5)5个处理,研究基本苗对多功能机械旱直播水稻产量和光合物质生产的影响。结果表明,随着基本苗的增加,主茎成穗占有效穗的比例呈增加趋势,产量呈先增后减的趋势,以B3产量最高(9.34−9.47 t ha−1),主要是其提高了群体总颖花量和抽穗到成熟阶段的生物量积累。与低基本苗处理(B1和B2)相比,B3较高的总颖花量与其穗数的增加有关。高基本苗处理下(B4和B5)的穗数也相对增加,但拔节到抽穗阶段较低的单株生物量、叶面积和含氮量导致其较小的穗型未能高产。与其他基本苗处理相比,B3抽穗到成熟阶段具有较高的生物量积累主要由于提高了群体顶三叶的光合速率、群体生长率、净同化率和叶面积指数。B3群体还表现出较高的粒叶比、较低的茎鞘输出率和转运率。通过一元二次方程拟合得出260−290 m−2是本研究条件下水稻获得高产的最佳基本苗。因此,适当增加基本苗,提高主茎穗占有效穗的比例,通过足量的主茎穗数产出较高的群体颖花量和生物量是麦秸还田后多功能机械旱直播水稻获得高产的有效途径。
参考文献 | 相关文章 | 多维度评价
3. Comparison of grain yield and quality of different types of japonica rice cultivars in the northern Jiangsu plain, China
BIAN Jin-long, REN Gao-lei, XU Fang-fu, ZHANG Hong-cheng, WEI Hai-yan
Journal of Integrative Agriculture    2021, 20 (8): 2065-2076.   DOI: 10.1016/S2095-3119(20)63348-2
摘要169)      PDF    收藏

近年来,我国南方稻区新育成的各类粳稻品种数量正不断增多。在大面积种植中,这些水稻新品种的产量和稻米品质表现出显著差异。然而,针对这些新育成粳稻品种产量和品质差异的研究却较少。因此,本研究选用了具有代表性的三类粳稻品种来研究其产量和稻米品质的差异。本研究利用差示热扫描仪(DSC)、X射线粉末衍射仪(XRD)、快速粘度分析仪(RVA)和米饭食味计对不同类型粳稻稻米的蒸煮和食味品质进行了测定。结果表明,两个非软米杂交粳稻品种的产量显著高于非软米常规粳稻品种和软米常规粳稻品种。两个软米常规粳稻品种的直链淀粉含量较低,蛋白质含量适中,这是其蒸煮食味品质优良的主要原因。软米常规粳稻品种的相对结晶度显著高于非软米常规粳稻品种和非软米杂交粳稻品种,这是导致其淀粉糊化所需温度和热量较高的主要因素。两个非软米杂交粳稻品种的大淀粉颗粒数量高于软米常规粳稻品种和非软米常规粳稻品种。消减值和崩解值能够间接反映米饭的蒸煮食味品质。两个软米常规粳稻品种的消减值较低,崩解值较高,这也说明了其米饭的适口性较好。本研究为不同类型粳稻品种在大面积水稻生产上的推广和应用提供了重要依据


参考文献 | 相关文章 | 多维度评价
4. Effects of temperature and solar radiation on yield of good eating-quality rice in the lower reaches of the Huai River Basin, China
ZHOU Nian-bing, ZHANG jun, FANG Shu-liang, WEI Hai-yan, ZHANG Hong-cheng
Journal of Integrative Agriculture    2021, 20 (7): 1762-1774.   DOI: 10.1016/S2095-3119(20)63561-4
摘要142)      PDF    收藏

试验研究了温度和太阳辐射对水稻产量的影响,旨在明确淮河下游水稻高产形成对温度和太阳辐射的需求。试验于2017-2018年以2个中熟中粳和4个迟熟中粳为材料,设置5月10日、5月17日、5月24日、5月31日、6月7日、6月14日和6月21日7个播种期。随着播期的推迟,水稻全生育期天数呈缩短的趋势,主要表现为播种至抽穗期天数的缩短。水稻全生育期有效积温、日平均温度、累积辐射和日均辐射均随播期推迟而减少。与T1播期相比,T2,T3,T4,T5,T6和T7播期分别减产0.12-0.35,0.45-0.89,0.74-1.56,1.41-2.24,2.16-2.90和2.69-3.64 t hm-2。水稻产量与不同生育阶段有效积温呈极显著正相关。温度是影响优质食味水稻在沿淮下游地区形成高产的主要气象因子,当中熟中粳和迟熟中粳获得相对高产时,播种至抽穗期平均温度范围分别为25.8-27.0°C和26.6-27.1°C,抽穗至成熟期分别为20.3-23.3°C和20.3-22.1°C。中熟中粳和迟熟中粳在沿淮下游地区的最佳播期分别为5月15-31日和5月15-18日


参考文献 | 相关文章 | 多维度评价
5. Effect of wide-narrow row arrangement in mechanical pot-seedling transplanting and plant density on yield formation and grain quality of japonica rice
HU Qun, JIANG Wei-qin, QIU Shi, XING Zhi-peng, HU Ya-jie, GUO Bao-wei, LIU Guo-dong, GAO Hui, ZHANG Hong-cheng, WEI Hai-yan
Journal of Integrative Agriculture    2020, 19 (5): 1197-1214.   DOI: 10.1016/S2095-3119(19)62800-5
摘要105)      PDF    收藏
Mechanical pot-seedling transplanting is an innovatively developed transplanting method that has the potential to replace mechanical carpet-seedling transplanting.  However, the initial pot-seedling transplanting machine lacked optimized density spacing and limited yield potential for japonica rice.  Therefore, ascertaining the optimized density by wide-narrow rows and the appropriate transplanting method for yield formation and grain quality of japonica rice is of great importance for high-quality rice production.  Field experiments were conducted using two japonica rice cultivars Nanjing 9108 and Nanjing 5055 under three transplanting methods in 2016 and 2017: mechanical pot-seedling transplanting with wide-narrow row (K, average row spacing of 30 cm); equidistant row (D, 33 cm×12 cm); and mechanical carpet-seedling transplanting (T, 30 cm×12.4 cm).  In addition, five different density treatments were set in K (K1–K5, from 18.62×104 to 28.49×104 hills ha–1).  The results showed that the highest yield was produced by a planting density of 26.88×104 hills ha–1 in mechanical pot-seedling transplanting with wide-narrow row with a greater number of total spikelets that resulted from significantly more panicles per area and slightly more grain number per panicle, as compared with equidistant row, and yield among density in wide-narrow row showed a parabolic trend.  Compared with mechanical carpet-seedling transplanting, the treatment of the highest yield increased yield significantly, which was mainly attributed to the larger sink size with improved filled-grain percentage and grain weight, higher harvest index, and increased total dry matter accumulation, especially the larger amount accumulated from heading stage to maturity stage.  With the density in wide-narrow row decreasing, processing quality, appearance quality, and nutrition quality were all improved, whereas amylose content and the taste value were decreased.  Compared with mechanical carpet-seedling transplanting, mechanical pot-seedling transplanting improved processing quality and nutrition quality, but decreased amylose content and deteriorated appearance quality.  These results suggested that mechanical pot-seedling transplanting with wide-narrow row coupling produced a suitable planting density of 26.88×104 hills ha–1 and may be an alternative approach to improving grain yield and quality for japonica rice.
参考文献 | 相关文章 | 多维度评价
6. Comparative analysis on grain quality and yield of different panicle weight indica-japonica hybrid rice (Oryza sativa L.) cultivars
BIAN Jin-long, REN Gao-lei, HAN Chao, XU Fang-fu, QIU Shi, TANG Jia-hua, ZHANG Hong-cheng, WEI Hai-yan, GAO Hui
Journal of Integrative Agriculture    2020, 19 (4): 999-1009.   DOI: 10.1016/S2095-3119(19)62798-X
摘要113)      PDF    收藏
Indica-japonica hybrid rice (Oryza sativa L.) cultivars showed high yield potential and poor tasting quality when compared with common japonica rice cultivars.  Large panicle is a prominent factor of high yield for indica-japonica hybrid rice cultivars, and the panicle weight varies greatly among different indica-japonica hybrid rice cultivars.  It is important to research on yield and grain quality of different panicle weight indica-japonica hybrid rice cultivars.  In this study, two different panicle types indica-japonica hybrid cultivars were used to research on the relation of yield and grain quality.  The yields of two heavy panicle weights indica-japonica hybrid cultivars were significantly higher than that of two medium panicle weight rice cultivars.  The cooking and eating quality and starch properties of different panicle type cultivars were evaluated.  Yongyou 6715 (medium panicle) and Yongyou 1852 (heavy panicle) got the relatively higher cooking and eating quality.  Rice cultivars with medium panicle weight had more large starch granules and higher relative crystallinity than cultivars with heavy panicle weight.  Transition temperature and retrogradation enthalpy (ΔHret) of medium panicle type cultivars were significantly higher than that of heavy panicle type cultivars.  There was no significant difference in amylose content among different panicle type cultivars.  Protein content of heavy panicle type cultivar was higher than that of medium panicle type cultivar, and protein content is the main factor affect cooking and eating quality in this study.  The cultivar Yongyou 6715 got the highest taste value with the lowest protein content.  Thus, it is suggested that the emphasis on improving rice cooking and eating quality of indica-japonica hybrid rice cultivars is how to reduce the protein content in rice grain.  According to the results of this study, medium panicle type with high grain weight is the desired panicle type for high quality indica-japonica hybrid rice breeding.
 
参考文献 | 相关文章 | 多维度评价
7. Yield characteristics of japonica/indica hybrids rice in the middle and lower reaches of the Yangtze River in China
XU Dong, ZHU Ying, CHEN Zhi-feng, HAN Chao, HU Lei, QIU Shi, WU Pei, LIU Guo-dong, WEI Hai-yan, ZHANG Hong-cheng
Journal of Integrative Agriculture    2020, 19 (10): 2394-2406.   DOI: 10.1016/S2095-3119(19)62872-8
摘要103)      PDF    收藏
Although a lot of researches have been done on yield characteristics of japonica/indica hybrid rice, there is little information on differences of yield characteristics between different types of hybrid.  To determine common characteristics of japonica/indica hybrid rice (JIHR) and identify the differences between different types of JIHR, the present study assessed yield characteristics, such as panicle trait, leaf area index (LAI), above-ground biomass accumulation, and nitrogen absorption and utilization, among three types of cultivar of JIHR.  In our field experiments, three types of JIHR, e.g., Yongyou, Chunyou and Jiayouzhongke, were divided, and each of them has two cultivars, which were used as materials, meanwhile, using conventional japonica rice (CJR) Wuyingjing 31 and Sujing 9 were as controls.  The results showed that the mean yield of those JIHR was above 12 t ha–1 in 2017 and 2018, and was 31.9 and 32.2%, respectively higher than that of CJR in the two years.  Spikelet number per panicle of JIHR resulted in high yield.  Higher yield of JIHR was likely contributed to greater panicle number and more spikelets per panicle.  Higher yielding JIHR showed stronger tillering capacity, larger LAI and above-ground biomass accumulation from jointing to heading stages, which likely contributed to the higher number of spikelets per panicle.  The long duration from heading to maturity stages allowed more nitrogen accumulation of higher yielding JIHR.
参考文献 | 相关文章 | 多维度评价
8. Effects of planting methods on yield and quality of different types of japonica rice in northern Jiangsu plain, China
BIAN Jin-long, XU Fang-fu, HAN Chao, QIU Shi, GE Jia-lin, XU Jing, ZHANG Hong-cheng, WEI Hai-yan
Journal of Integrative Agriculture    2018, 17 (12): 2624-2635.   DOI: 10.1016/S2095-3119(18)62141-0
摘要395)      PDF    收藏
Mechanical transplanting with carpet seedlings (MC) and mechanical direct seeding (MD) are newly developed planting methods, which increase in popularity and planted area each year. Knowing the difference for yield and rice quality under different planting methods is of great importance for the development of high quality and yield cultivation techniques under mechanical conditions. Therefore, three kinds of japonica rice including hybrid japonica rice, inbreed japonica rice, and soft rice were adopted as materials. And the differences in the quality of processing, appearance, cooking and eating quality, nutrition, and the rapid viscosity analyzer (RVA) profile were studied to reveal the effects of planting methods on yield and quality of different types of japonica rice. Results showed that the milled rice and head rice rates under MC was significantly higher than those under MD, and the processing quality of inbreed japonica rice was the most stable. Compared with MC, length/width ratio of rice under MD was significantly increased, and chalkiness rate, size, and degree were significantly decreased. The protein content under MD was lower than that under MC. MC showed higher peak viscosity and breakdown value than MD. The taste value was the greatest for soft rice, followed by inbreed japonica rice, and then by japonica hybrid rice, with no significant differences resulting from planting methods. Compared with MC, MD significantly improved the appearance quality, though processing quality and nutritional quality were decreased. And there was no significant difference in cooking and eating quality between MC and MD. Under different planting methods, the appearance quality of inbreed japonica rice changed the most and the processing quality was the most stable. The nutritional, cooking and eating quality of soft rice changed the least. Therefore, according to the different planting methods and market needs, selecting the appropriate rice varieties can reduce the risks in rice production and achieve good rice quality.
参考文献 | 相关文章 | 多维度评价
9. Combined effect of shading time and nitrogen level on grain filling and grain quality in japonica super rice
WEI Hai-yan, ZHU Ying, QIU Shi, HAN Chao, HU Lei, XU Dong, ZHOU Nian-bing, XING Zhi-peng, HU Ya-jie, CUI Pei-yuan, DAI Qi-gen, ZHANG Hong-cheng
Journal of Integrative Agriculture    2018, 17 (11): 2405-2417.   DOI: 10.1016/S2095-3119(18)62025-8
摘要369)      PDF(pc) (1180KB)(727)    收藏
There is limited information about the combined effect of shading time and nitrogen (N) on grain filling and quality of rice.  Therefore, two japonica super rice cultivars, Nanjing 44 and Ningjing 3, were used to study the effect of shading time and N level on the characteristics of rice panicle and grain filling as well as the corresponding yield and quality.  At a low N level (150 kg N ha–1, 150N), grain yield decreased (by 21.07–26.07%) under the treatment of 20 days of shading before heading (BH) compared with the no shading (NS) treatment.  These decreases occurred because of shortened panicle length, decreased number of primary and secondary branches, as well as the grain number and weight per panicle.  At 150N, in the treatment of 20 days of shading after heading (AH), grain yield also decreased (by 9.46–10.60%) due to the lower grain weight per panicle.  The interaction of shading and N level had a significant effect on the number of primary and secondary branches.  A high level of N (300 kg N ha–1, 300N) could offset the negative effect of shading on the number of secondary branches and grain weight per panicle, and consequently increased the grain yield in both shading treatments.  In superior grains, compared with 150N NS, the time to reach 99% of the grain weight (T99) was shortened by 1.6 to 1.7 days, and the grain weight was decreased by 4.18–5.91% in 150N BH.  In 150N AH, the grain weight was 13.39–13.92% lower than that in 150N NS due to the slow mean and the maximum grain-filling rate (GRmean and GRmax).  In inferior grains, grain weight and GRmean had a tendency of 150N NS>150N BH>150N AH.  Under shaded conditions, 300N decreased the grain weight due to lower GRmean both in superior and inferior grains.  Compared with 150N NS, the milling and appearance qualities as well as eating and cooking quality were all decreased in 150N BH and 150N AH.  Shading with the high level of 300N improved the milling quality and decreased the number of chalky rice kernels, but the eating and cooking quality was reduced with increased chalky area and overall chalkiness.  Therefore, in the case of short term shading, appropriate N fertilizer could be used to improve the yield and milling quality of rice, but limited application of N fertilizer is recommended to achieve good eating and cooking quality of rice.
 
参考文献 | 相关文章 | 多维度评价
10. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice
WEI Hai-yan, CHEN Zhi-feng, XING Zhi-peng, ZHOU Lei, LIU Qiu-yuan, ZHANG Zhen-zhen, JIANG Yan, HU Ya-jie, ZHU Jin-yan, CUI Pei-yuan, DAI Qi-gen, ZHANG Hong-cheng
Journal of Integrative Agriculture    2018, 17 (10): 2222-2234.   DOI: 10.1016/S2095-3119(18)62052-0
摘要469)      PDF    收藏
There is limited information about the influence of slow or controlled release fertilizer (S/CRF) on rice yield and quality.  In this study, japonica rice cultivar Nanjing 9108 was used to study the effects of three different S/CRFs (polymer-coated urea (PCU), sulfur-coated urea (SCU), and urea formaldehyde (UF)) and two fertilization modes (both S/CRF and common urea (CU) as basal fertilizer, S/CRF as basal and CU as tillering fertilizer) on rice yield and quality.  CU only was applied separately as control (CK).  Results showed that, rice grain yield, chalky kernel rate, chalky area, overall chalkiness, and the content of gliadin, glutenin, and protein, all showed the trends of UF>PCU>SCU within the same fertilization mode, and showed the trends of S/CRF as basal and CU as tillering fertilizer>both S/CRF and CU as basal fertilizer within the same type of S/CRF.  In contrast, the contents of amylose, amylopectin, and starch, as well as taste value, and peak and hot viscosity showed trends of SCU>PCU>UF, and the trends of both S/CRF and CU as basal fertilizer>S/CRF as basal and CU as tillering fertilizer.  Among S/CRF treatments and fertilization modes, taste values of cooked rice were positively correlated with amylose, amylopectin, and starch contents, as well as gel consistency, peak viscosity, hot viscosity, and cool viscosity, while negatively correlated with globulin, gliadin, glutenin, and protein contents.  The types of S/CRF and fertilization modes are important for improving rice yield and quality.  Compared to CK, higher yield and similar quality of rice was achieved with UF as basal and CU as tillering fertilizer, and similar yield with improved appearance and eating and cooking quality of rice was achieved with either both UF and CU as basal fertilizer, or PCU as basal and CU as tillering fertilizer.
 
参考文献 | 相关文章 | 多维度评价
11. Comparison of agronomic performance between inter-sub-specific hybrid and inbred japonica rice under different mechanical transplanting methods
HU Ya-jie, WU Pei, ZHANG Hong-cheng, DAI Qi-gen, HUO Zhong-yang, XU Ke, GAO Hui, WEI Hai-yan, GUO Bao-wei, CUI Pei-yuan
Journal of Integrative Agriculture    2018, 17 (04): 806-816.   DOI: 10.1016/S2095-3119(17)61819-7
摘要516)      PDF    收藏
Mechanical transplanting has been applied to rice cultivation to save labor costs and ease labor shortages in Asian countries, especially in China.  However, little information is available related to the characteristics of agronomic performance when comparing inter-sub-specific hybrid rice (IHR) and inbred japonica rice (IJR) under mechanical transplanting method.  In 2013 and 2014, field experiments were conducted using IHR (Yongyou 2640) and IJR (Wuyunjing 24) under two cultivation patterns, that is, pot seedlings mechanically transplanted (PS) and carpet seedlings mechanically transplanted (CS).  Grain yield, yield components, leaf area index (LAI), leaf area duration (LAD), aboveground biomass, crop growth rate (CGR), nitrogen (N) uptake, and N accumulation were investigated.  When compared with CS, PS displayed significantly increased grain yield for both varieties because the larger sink size allowed higher N accumulation from panicle initiation to maturity.  Moreover, total aboveground biomass under PS increased significantly compared with that under CS; that is, higher photosynthetic productivity resulted from a greater LAI and higher LAD during the grain filling stage.  Higher N absorption capacity in the middle and late growth periods resulted in significantly enhanced total N uptake under PS.  When compared with IJR for both treatments, IHR generated 75.2% more grain yield.  However, the characteristics creating high yield of IHR were different from those of IJR.  Greater aboveground biomass production as well as higher N uptake and accumulation created higher grain yield in IHR than in IJR.  These results suggest higher yield could be achieved using PS with IHR, attributing to exploit both yield superiority and productive potential.
参考文献 | 相关文章 | 多维度评价
12. Temperature and solar radiation utilization of rice for yield formation with different mechanized planting methods in the lower reaches of the Yangtze River, China
XING Zhi-peng, WU Pei, ZHU Ming, QIAN Hai-jun, HU Ya-jie, GUO Bao-wei, WEI Hai-yan, XU Ke, HUO Zhong-yang, DAI Qi-gen, ZHANG Hong-cheng
Journal of Integrative Agriculture    2017, 16 (09): 1923-1935.   DOI: 10.1016/S2095-3119(16)61596-4
摘要1070)      PDF    收藏
Several studies have demonstrated the effect of planting methods on rice yield, but information on the climate resources is limited.  This study aims to reveal the effects of planting methods on climate resources associated with rice yield in a rice-wheat rotation system in the lower reaches of the Yangtze River, China.  Field experiments were conducted in 2014 and 2015 with two japonica, two indica hybrid, and two japonica-indica hybrid varieties grown under three mechanized planting methods: carpet seedling of mechanical transplanting (CT), mechanical direct seeding (DS), and pot-hole seedling of mechanical transplanting (PT).  The rice yield and total This study was financially supported by grants from the Major Independent Innovation Project in Jiangsu Province, China (CX(15)1002), the Agricultural Science and Technology Innovation Fund in Jiangsu Province, China (CX(12)1003-09), the National Key Research Program of China (2016YFD0300503), the Science and Technology Plan of Jiangsu Province, China (BE2015340), the Research Innovation Program for College Graduates of Jiangsu Province, China (KYLX15_1369), and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.dry matter under PT were greater than those under CT and DS methods.  Besides, the entire growth duration and daily production showed significant positive relations with rice yield.  Compared with CT and DS, the effective accumulated temperature and cumulative solar radiation of rice under PT were higher in phenological phases.  In addition, the dry matter/effective accumulated temperature and solar energy utilization of rice under CT and DS were higher during vegetative phase and lower during reproductive and grain filling phases in contrast to PT.  The mean daily temperature and mean daily solar radiation in the entire growth duration showed significant positive correlation with rice yield, total dry matter, and harvest index.  This study demonstrated that when the mean daily temperature is <25.1°C in vegetative phase and >20.1°C in grain filling phase, rice yield could be increased by selecting mechanized planting methods.  Most varieties under PT method exhibited high yield and climate resources use efficiency compared with CT and DS.  In conclusion, the PT method could be a better cultivation measure for high rice yield, accompanied with high temperature and solar radiation use efficiency in a rice-wheat rotation system in the lower reaches of the Yangtze River, China.
参考文献 | 相关文章 | 多维度评价
13. Comparison of yield traits in rice among three mechanized planting methods in a rice-wheat rotation system
XING Zhi-peng, HU Ya-jie, QIAN Hai-jun, CAO Wei-wei, GUO Bao-wei, WEI Hai-yan, XU Ke, HUO Zhong-yang, ZHOU Gui-sheng, DAI Qi-gen, ZHANG Hong-cheng
Journal of Integrative Agriculture    2017, 16 (07): 1451-1466.   DOI: 10.1016/S2095-3119(16)61562-9
摘要842)      PDF    收藏
     Understanding the differences in yield traits of rice among pothole seedling of mechanical transplanting (PSMT), carpet seedling of mechanical transplanting (CSMT) and mechanical direct seeding (MDS) is of great importance not only for rice scientists but also for rice farmers to develop a high-yield production system under mechanical conditions in a rice-wheat rotation system.  However, such traits are yet to be studied among rice varieties of japonica-indica hybrid rice (JIHR), japonica conventional rice (JCR) and indica hybrid rice (IHR).  Field experiments were conducted in 2014 and 2015, where six cultivars of the three rice types JIHR, JCR and IHR were grown individually with PSMT, CSMT and MDS methods, under respective managements for each method to achieve the maximum attainable yield.  Results showed that (i) the PSMT significantly increased grain yield of JIHR by 22.0 and 7.1%, of JCR by 15.6 and 3.7% and of IHR by 22.5 and 7.4%, compared to MDS and CSMT on average across the two years, respectively.  The highest yield was produced by the combination of JIHR and PSMT; (ii) high yield under PSMT was mainly attributed to large sink capacity and high-efficient dry matter accumulation.  With sufficient panicles per hectare, the increase of spikelet number per panicle, especially the increase in spikelet number of the secondary rachis-branches was determined to be the optimal approach for developing a large sink capacity for rice under PSMT.  The optimal tillers development, large leaf area index at heading stage, and high leaf area duration, crop growth rate and net assimilation rate during grain-filling phase could be the cause of sufficient dry matter accumulation for rice under PSMT; (iii) moreover, the PSMT favored plant growth as well as enriched the stems plus sheaths during grain-filling phase, as compared with CSMT and MDS.  These results suggest that PSMT may be an alternative approach to increasing grain yield in a rice-wheat rotation system in the lower reaches of the Yangtze River in China.
参考文献 | 相关文章 | 多维度评价
14. Effects of nitrogen level on yield and quality of japonica soft super rice
ZHU Da-wei, ZHANG Hong-cheng, GUO Bao-wei, XU Ke, DAI Qi-gen, WEI Hai-yan, GAO Hui, HU Ya-jie, CUI Pei-yuan, HUO Zhong-yang
Journal of Integrative Agriculture    2017, 16 (05): 1018-1027.   DOI: 10.1016/S2095-3119(16)61577-0
摘要1060)      PDF    收藏
Although studies on the balance between yield and quality of japonica soft super rice are limited, they are crucial for super rice cultivation.  In order to investigate the effects of nitrogen application rate on grain yield and rice quality, two japonica soft super rice varieties, Nanjing 9108 (NJ 9108) and Nanjing 5055 (NJ 5055), were used under seven N levels with the application rates of 0, 150, 187.5, 225, 262.5, 300, and 337.5 kg ha–1.  With the increasing nitrogen application level, grain yield of both varieties first increased and then decreased.  The highest yield was obtained at 300 kg ha–1.  The milling quality and protein content increased, while the appearance quality, amylose content, gel consistency, cooking/eating quality, and rice flour viscosity decreased.  Milling was significantly negatively related with the eating/cooking quality whereas the appearance was significantly positively related with cooking/eating quality.  These results suggest that nitrogen level significantly affects the yield and rice quality of japonica soft super rice.  We conclude that the suitable nitrogen application rate for japonica soft super rice, NJ 9108 and NJ 5055, is 270 kg ha–1, under which they obtain high yield as well as superior eating/cooking quality.
参考文献 | 相关文章 | 多维度评价
15. Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China
WEI Huan-he, LI Chao, XING Zhi-peng, WANG Wen-ting, DAI Qi-gen, ZHOU Gui-shen, WANG Li, XU Ke, HUO Zhong-yang, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
Journal of Integrative Agriculture    2016, 15 (1): 50-62.   DOI: 10.1016/S2095-3119(15)61082-6
摘要2191)      PDF    收藏
Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone and evaluation of yield advantage is of practical importance for LMYS in this region. Fifteen LMYS, two high-yielding inbred japonica check varieties (CK-J) and two high-yielding hybrid indica check varieties (CK-I) were grown at Xinghua (119.57°E, 33.05°N) of Lixiahe region, Yangzhou (119.25°E, 32.30°N) of Yanjiang region, Changshu (120.46°E, 31.41°N) of Taihu Lake region, and Ningbo (121.31°E, 29.45°N) of Ningshao Plain in 2013 and 2014. The results showed that maturity dates of the 15 were later than the secure maturity date at Xinghua and 6, 14 and 15 LMYS were mature before the secure maturity date at Yangzhou, Changshu and Ningbo, respectively. One variety was identified as high-yielding variety among LMYS (HYYS) at Yangzhou, 8 HYYS in 2013 and 9 HYYS in 2014 at Changshu, 9 HYYS at Ningbo. HYYS here referred to the variety among LMYS that was mature before the secure maturity date and had at least 8% higher grain yield than both CK-J and CK-I at each experimental site. Grain yield of HYYS at each experimental site was about 12.0 t ha–1 or higher, and was significantly higher than CK varieties. High yield of HYYS was mainly attributed to larger sink size due to more spikelets per panicle. Plant height of HYYS was about 140 cm, and was significantly higher than check varieties. Significant positive correlations were recorded between duration from heading to maturity stage and grain yield, and also between whole growth periods and grain yield. HYYS had obvious advantage over check varieties in biomass accumulation and leaf area duration from heading to maturity stage. Comprehensive consideration about safe maturity and yield performance of LMYS at each experimental site, Taihu Lake region (representative site Changshu) and Ningshao Plain (representative site Ningbo) were thought suitable growing zones for LMYS in the lower reaches of Yangtze River. The main factors underlying high yield of HYYS were larger sink size, higher plant height, longer duration from heading to maturity stage and whole growth periods, and higher biomass accumulation and leaf area duration during grain filling stage.
参考文献 | 相关文章 | 多维度评价