期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Nitrous oxide emissions following seasonal freeze-thaw events from arable soils in Northeast China
CHEN Zhe, YANG Shi-qi, ZHANG Ai-ping, JING Xin, SONG Wei-min, MI Zhao-rong, ZHANG Qingwen, WANG Wen-ying, YANG Zheng-li
Journal of Integrative Agriculture    2018, 17 (01): 231-246.   DOI: 10.1016/S2095-3119(17)61738-6
摘要614)      PDF    收藏
Seasonal soil freeze-thaw events may enhance soil nitrogen transformation and thus stimulate nitrous oxide (N2O) emissions in cold regions.  However, the mechanisms of soil N2O emission during the freeze-thaw cycling in the field remain unclear.  We evaluated N2O emissions and soil biotic and abiotic factors in maize and paddy fields over 20 months in Northeast China, and the structural equation model (SEM) was used to determine which factors affected N2O production during non-growing season.  Our results verified that the seasonal freeze-thaw cycles mitigated the available soil nitrogen and carbon limitation during spring thawing period, but simultaneously increased the gaseous N2O-N losses at the annual time scale under field condition.  The N2O-N cumulative losses during the non-growing season amounted to 0.71 and 0.55 kg N ha–1 for the paddy and maize fields, respectively, and contributed to 66 and 18% of the annual total.  The highest emission rates (199.2–257.4 μg m–2 h–1) were observed during soil thawing for both fields, but we did not observe an emission peak during soil freezing in early winter.  Although the pulses of N2O emission in spring were short-lived (18 d), it resulted in approximately 80% of the non-growing season N2O-N loss.  The N2O burst during the spring thawing was triggered by the combined impact of high soil moisture, flush available nitrogen and carbon, and rapid recovery of microbial biomass.  SEM analysis indicated that the soil moisture, available substrates including NH4+ and dissolved organic carbon (DOC), and microbial biomass nitrogen (MBN) explained 32, 36, 16 and 51% of the N2O flux variation, respectively, during the non-growing season.  Our results suggested that N2O emission during the spring thawing make a vital contribution of the annual nitrogen budget, and the vast seasonally frozen and snow-covered croplands will have high potential to exert a positive feedback on climate change considering the sensitive response of nitrogen biogeochemical cycling to the freeze-thaw disturbance.   
参考文献 | 相关文章 | 多维度评价
2. Using side-dressing technique to reduce nitrogen leaching and improve nitrogen recovery efficiency under an irrigated rice system in the upper reaches of Yellow River Basin, Northwest China
ZHANG Ai-ping, GAO Ji, LIU Ru-liang, ZHANG Qing-wen, CHEN Zhe, YANG Shi-qi, YANG Zheng-li
Journal of Integrative Agriculture    2016, 15 (1): 220-231.   DOI: 10.1016/S2095-3119(14)60952-7
摘要1936)      PDF    收藏
The excessive nitrogen (N) fertilizer input coupled with flood irrigation might result in higher N leaching and lower nitrogen recovery efficiency (NRE). Under an intensive rice system in the Ningxia irrigation region, China, environmental friendly N management practices are heavily needed to balance the amount of N input for optimum crop production while minimize the nitrogen loss. The objective of this study was to determine the influences of side-dressing (SD) technique in mechanical transplanting systems on the NRE, N leaching losses and rice yield in anthropogenic-alluvial soil during two rice growing seasons (2010-2011). Four fertilizer N treatments were established, including conventional urea rate (CU, 300 kg ha–1 yr–1); higher SD of controlled-release N fertilizer rate (SD1, 176 kg ha–1 yr–1); lower SD of controlled-release N fertilizer rate (SD2, 125 kg ha–1 yr–1); and control (CK, no N fertilizer). Field lysimeters were used to quantify drainage from undisturbed soil during six rice growing stages. Meanwhile, the temporal variations of total nitrigen (TN), NO3 –-N, and NH4 +-N concentrations in percolation water were examined. The results showed that SD1 substantially improved NRE and reduced N leaching losses while maintaining rice yields. Across two years, the averaged NRE under SD1 treatment increased by 25.5% as relative to CU, but yet the rice yield was similar between two treatments. On average, the nitrogen loss defined as TN, NH4 +-N, and NO3 –-N under the SD1 treatment reduced by 27.4, 37.2 and 24.1%, respectively, when compared with CU during the study periods. Although the SD2 treatment could further reduce N leaching loss to some extent, this technique would sharply decline rice yield, with the magnitude of as high as 21.0% relative to CU treatment. Additionally, the average NRE under SD2 was 11.2% lower than that under SD1 treatment. Overall, the present study concluded that the SD technique is an effective strategy to reduce N leaching and increase NRE, thus potentially mitigate local environmental threat. We propose SD1 as a novel alternative fertilizer technique under an irrigated rice-based system in Ningxia irrigation region when higher yields are under consideration.
参考文献 | 相关文章 | 多维度评价