期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 变栖克雷伯氏菌FH-1的定殖可诱导大豆生长并缓解核盘菌胁迫
ZHAI Qian-hang, PAN Ze-qun, ZHANG Cheng, YU Hui-lin, ZHANG Meng, GU Xue-hu, ZHANG Xiang-hui, PAN Hong-yu, ZHANG Hao
Journal of Integrative Agriculture    2023, 22 (9): 2729-2745.   DOI: 10.1016/j.jia.2023.01.007
摘要240)      PDF    收藏
由核盘菌(Sclerotinia sclerotiorum)引起的菌核病是一种毁灭性的土传大豆病害,会造成巨大的产量损失。我们以前报道过变栖克雷伯氏菌FH-1可以降解莠去津除草剂,并且可以增加莠去津敏感作物(如大豆)的营养生长。我们发现FH-1可以促进大豆生长并诱导对菌核病菌的抗性,为了证明FH-1对大豆菌核病菌的生防机制并评价其生防能力,我们在体外培养基试验中证明菌株FH-1可以固定培养基中的氮,溶解无机磷和钾,并产生吲哚乙酸和铁载体,具有促进植物生长的潜力。盆栽试验结果表明,变栖克雷伯氏菌FH-1能促进大豆植株发育,显著提高株高、鲜重和根长,并诱导大豆叶片对菌核病的抗性。用菌株FH-1治疗的疾病进展曲线下面积(AUDPC)显著低于对照,并且在48小时内减少了高达42.2%。(P < 0.001)。此外,紫外分光光度计法测量结果表明菌株FH-1可以增强参与大豆植物防御的过氧化氢酶、超氧化物歧化酶、过氧化物酶、苯丙氨酸解氨酶和多酚氧化酶的酶活性,并减少了叶片中丙二醛的积累。定量实时PCR检测了可能参与大豆抵抗核盘菌胁迫的相关基因的转录水平,结果表明诱导抗性的机制似乎主要是由于变栖克雷伯氏菌FH-1诱导PR10、PR12、AOS、CHS和PDF1.2基因转录水平的提高。利用结晶紫染色法测定了菌株FH-1具有生物膜形成能力,用共聚焦荧光显微镜和扫描电镜观测菌株FH-1在大豆根上的定殖情况,菌株FH-1可以定殖在大豆根表面、根毛和外皮层上形成生物膜。综上所述,变栖克雷伯氏菌FH-1在大豆根部的定殖有助于诱导参与植物保护的防御酶和相关防御基因的表达,诱导大豆对菌核病菌的抗性表现出生物防治潜力。这对大豆的种植和生长具有重要意义。此外,本研究有助于理解变种芽胞杆菌FH-1、大豆植株和核盘菌之间相互作用的有价值的第一步,这为绿色防控提供了新的思路。


参考文献 | 相关文章 | 多维度评价
2. Intelligent diagnosis of northern corn leaf blight with deep learning model
PAN Shuai-qun, QIAO Jing-fen, WANG Rui, YU Hui-lin, WANG Cheng, Kerry TAYLOR, PAN Hong-yu
Journal of Integrative Agriculture    2022, 21 (4): 1094-1105.   DOI: 10.1016/S2095-3119(21)63707-3
摘要213)      PDF    收藏
Maize (Zea mays L.), also known as corn, is the third most cultivated crop in the world.  Northern corn leaf blight (NCLB) is a globally devastating maize foliar disease caused by Setosphaeria turcica (Luttrell) Leonard and Suggs.  Early intelligent diagnosis and warning is an effective and economical strategy to control this disease.  Today, deep learning is beginning to play an essential role in agriculture.  Notably, deep convolutional neural networks (DCNN) are amongst the most successful machine learning techniques in plant disease detection and diagnosis.  Our study aims to identify NCLB in the maize-producing area in Jilin Province based on several DCNN models.  We established a database of 985 leaf images of healthy and infected maize and applied data augmentation techniques including image segmentation, image resizing, image cropping, and image transformation, to expand to 30 655 images.  Several proven convolutional neural networks, such as AlexNet, GoogleNet, VGG16, and VGG19, were then used to identify diseases.  Based on the best performance of the DCNN pre-trained model GoogleNet, some of the recent loss functions developed for deep facial recognition tasks such as ArcFace, CosFace, and A-Softmax were applied to detect NCLB.  We found that a pre-trained GoogleNet architecture with the Softmax loss function can achieve an excellent accuracy of 99.94% on NCLB diagnosis.  The analysis was implemented in Python with two deep learning frameworks, Pytorch and Keras.  The techniques, training, validation, and test results are presented in this paper.  Overall, our study explores intelligent identification technology for NCLB and effectively diagnoses NCLB from images of maize.
参考文献 | 相关文章 | 多维度评价
3. Non-target-site and target-site resistance to AHAS inhibitors in American sloughgrass (Beckmannia syzigachne)
WANG Jing-jing, LI Xiang-ju, LI Dan, HAN Yu-jiao, LI Zheng, YU Hui-lin, CUI Hai-lan
Journal of Integrative Agriculture    2018, 17 (12): 2714-2723.   DOI: 10.1016/S2095-3119(18)62021-0
摘要285)      PDF    收藏
American sloughgrass (Beckmannia syzigachne (Steud.) Fernald) is one of the most competitive and malignant weeds in rice-wheat rotation fields in China.  American sloughgrass populations in the Jiangsu Province of China became less sensitive to acetohydroxyacid synthase (AHAS) inhibitors after repeated application for many years in these areas.  Two suspected resistant American sloughgrass populations (R1 and R2) collected in the field were detected the resistance to inhibitors of AHAS in whole-plant dose-response assays, compared to the susceptible (S) population.  These assays indicated that R1 showed low resistance to mesosulfuron-methyl (3.32-fold), imazapic (2.84-fold) and pyroxsulam (1.55-fold), moderate resistance to flazasulfuron (4.67-fold) and pyribenzoxim (7.41-fold), and high resistance to flucarbazone (11.73-fold).  However, using a combination of the cytochrome P450 inhibitor, malathion, with mesosulfuron-methyl resulted in a reduction in R1 resistance relative to mesosulfuron-methyl alone.  Furthermore, R2 was highly resistant to flazasulfuron (34.90-fold), imazapic (11.30-fold), flucarbazone (49.20-fold), pyribenzoxim (12.94-fold), moderately resistant to mesosulfuron-methyl (9.77-fold) and pyroxsulam (6.26-fold), and malathion had no effect on R2 resistance to mesosulfuron-methyl.  The full-length of AHAS genes was sequenced and the AHAS enzymes were assayed in vitro in order to clarify the mechanism of resistance to AHAS inhibitors in R1 and R2 populations.  The results demonstrated that R2 had a Pro-197-Ser mutation in the AHAS gene, and the sensitivity of R2 to the five AHAS inhibitors was decreased, which may result in R2 resistance to AHAS inhibitors.  There was no mutation in the AHAS gene of R1, and there were no significant differences in enzyme sensitivity between susceptible (S) and resistant (R1) populations.  An enhanced metabolism may be the main mechanism of R1 resistance to AHAS inhibitors.
参考文献 | 相关文章 | 多维度评价
4. Novel 6-bp Deletion Mutation in visfatin Gene and Its Associations with Birth Weight and Bodyweight in Chinese Cattle
WANG Mou, ZHANG Ya, YU Hui, LAI Xin-sheng, ZHU Jin-long, JIAO Jin-zhen, LAN Xian-yong, LEI Chuzhao, ZHANG Liang-zhi, CHEN Hong
Journal of Integrative Agriculture    2012, 12 (8): 1327-1332.   DOI: 10.1016/S1671-2927(00)8662
摘要1377)      PDF    收藏
Visfatin, like insulin, induces phosphorylation of signal transduction proteins that operatate downstream of the insulin receptor. The present study is focused on detecting deletion of visfatin gene and analyzing its effect on growth traits in six Chinese cattle breeds (Nangyang, Luxi, Qinchuan, Jiaxian Red, Grassland Red, and Chinese Holstein) using DNA sequencing, PCR-SSCP and PCR-RFLP methods. For the first time, a 6-bp deletion of visfatin was described and two alleles were revealed: W and D. The χ2-test analysis demonstrated that all breeds were in agreement with Hardy-Weinberg equilibrium (P>0.05). The associations of the novel 6-bp deletion of visfatin gene with growth traits of Nanyang cattle at 6-, 12-, 18-, and 24-mon-old were analyzed. Birth weight, 12- and 24-mon-old cattle with genotype WW had greater birth weight and average daily gain than genotype WD (P<0.01 or P<0.05). These results suggest that the deletion may influence the birth weight and bodyweight in 12 mon-old cattle.
参考文献 | 相关文章 | 多维度评价