期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 降低穗肥施用减轻弱光胁迫对水稻产量和品质的负面效应
WEI Huan-he, GE Jia-lin, ZHANG Xu-bin, ZHU Wang, DENG Fei, REN Wan-jun, CHEN Ying-long, MENG Tian-yao, DAI Qi-gen
Journal of Integrative Agriculture    2023, 22 (7): 2041-2053.   DOI: 10.1016/j.jia.2022.08.045
摘要283)      PDF    收藏

弱光胁迫成为水稻生产中日趋严重的逆境,然而关于弱光胁迫对华东地区水稻产量和品质的研究报道仍较少;此外,也应探索合理的氮肥施用措施以减轻弱光胁迫对水稻产量和品质的负面效应。本研究旨在明确遮光遮光、花后遮光)穗肥施用量(NDP,降低穗肥用量NMP正常穗肥用量NIP增加穗肥用量)稻产量和品质相关性状的影响。无遮光相比,遮光处理下水稻减产9.5%-14.8% (P<0.05),主要是由于较低的结实率和粒重。遮光处理下,NMP和NIP产量显著高于(P<0.05)NDP遮光处理下,不同穗肥施用处理的产量则无显著差异。NMP和NIP相比NDP遮光处理的减产幅度小,这主要是由于其较高的结实率和粒重无遮光相比,遮光处理降低花后叶片光合速率成熟期干物质抽穗至成熟期干物质积累量成熟期茎鞘非结构性碳水化合物(NSC)的积累量。NDP提高了遮光处理下的收获指数和NSC运转效率。无遮光相比,遮光处理降低稻米糙米率、精米率、整精米率直链淀粉含量,提高了垩白米率、垩白面积和垩白度以及蛋白质含量。无遮光处理下稻米加工品质NMP最优,遮光处理下则以NDP最优在无遮光和遮光处理下,NDP垩白米率、垩白面积和垩白度NMP和NIP。遮光处理下,NDP直链淀粉含量和崩解值降低,蛋白质含量和消减值则提高,从而实现了与遮光处理相近的食味值。本研究结果表明花后遮光显著恶化水稻产量和稻米品质遮光处理下,NDP促进NSC转运、提高收获指数以及库容充实效率,从而降低产量损失此外,NDP维持遮光处理下稻米加工、外观和蒸煮食味品质因此,适当降低穗肥施用减轻弱光胁迫对水稻产量和品质的负面效应

参考文献 | 相关文章 | 多维度评价
2.
Higher leaf area through leaf width and lower leaf angle were the primary morphological traits for yield advantage of japonica/indica hybrids
WEI Huan-he, YANG Yu-lin, SHAO Xing-yu, SHI Tian-yi, MENG Tian-yao, LU Yu, TAO Yuan, LI Xin-yue, DING En-hao, CHEN Ying-long, DAI Qi-gen
Journal of Integrative Agriculture    2020, 19 (2): 483-494.   DOI: 10.1016/S2095-3119(19)62628-6
摘要143)      PDF    收藏
The yield potential of japonica/indica hybrids (JIH) has been achieved over 13.5 t ha–1 in large-scale rice fields, and some physiological traits for yield advantage of JIH over japonica inbred rice (JI) and indica hybrid rice (IH) were also identified.  To date, little attention has been paid to morphological traits for yield advantage of JIH over JI and IH.  For this reason, three JIH, three JI, and three IH were field-grown at East China (Ningbo, Zhejiang Province) in 2015 and 2016.  Compared with JI and IH, JIH had 14.3 and 20.8% higher grain yield, respectively, attributed to its more spikelets per panicle and relatively high percentage of filled grains.  The advantage in spikelets per panicle of JIH over JI and IH was shown in number of grains on the upper, middle, and lower branches.  Compared with JI and IH, JIH had higher leaf area through leaf width and lower leaf angle of upper three leaves, higher leaf area index and leaf area per tiller at heading and maturity stages, higher stem weight per tiller and K and Si concentrations of stem at maturity, higher dry matter weight in leaf, stem, and panicle at heading and maturity stages, and higher biomass accumulation after heading and lower biomass translocation from stem during ripening.  Leaf width of upper three leaves were correlated positively, while leaf angle of upper three leaves were correlated negatively with biomass accumulation after heading, stem weight per tiller, and per unit length.  Our results indicated that the grain yield advantage of JIH was ascribed mainly to the more spikelets per panicle and relatively high percentage of filled grains.  Higher leaf area through leaf width and more erect leaves were associated with improved biomass accumulation and stem weighing during ripening, and were the primary morphological traits underlying higher grain yield of JIH.
 
参考文献 | 相关文章 | 多维度评价
3. Morpho-physiological traits contributing to better yield performance of japonica/indica hybrids over indica hybrids under input-reduced practices
WEI Huan-he, MENG Tian-yao, GE Jia-lin, ZHANG Xu-bin, LU Yu, LI Xin-yue, TAO Yuan, DING En-hao, CHEN Ying-long, DAI Qi-gen
Journal of Integrative Agriculture    2020, 19 (11): 2643-2655.   DOI: 10.1016/S2095-3119(20)63251-8
摘要123)      PDF    收藏
It is widely reported that japonica/indica hybrids (JIH) have superior grain yield over other main varietal groups such as indica hybrids (IH) under sufficient resource inputs.  To date, little attention has been paid to yield performance of JIH under input-reduced practices, and whether JIH could have better grain yield performance over IH under input-reduced practices.  In this study, three JIH varieties and three IH varieties were compared in grain yield and their related morpho-physiological traits under two cultivation modes, i.e., conventional high-yielding method (CHYM) and double reductions in nitrogen rate and planting density (DRNP).  Our results showed that JIH had 8.3 and 13.3% higher grain yield over IH under CHYM and DRNP, respectively.  The superior grain yield of JIH over IH under DRNP was mainly attributed to larger sink size and improved sink filling efficiency.  Three main morpho-physiological traits were concluded for better yield performance of JIH over IH under DRNP.  Firstly, JIH had the reduced unproductive tillers growth, indicated by a higher percentage of productive tillers and the percentage of effective leaf area index (LAI) to total LAI at heading stage.  Secondly, a synergistic increase in biomass accumulation and harvest index were achieved of JIH, supported by higher biomass accumulation and leaf area duration during the main growth periods, and improved non-structural carbohydrate (NSC) remobilization after heading.  Thirdly, JIH had an improved canopy structure, showing as higher leaf area of upper three leaves and lower light extinction coefficient.  Our results suggested that improved morpho-physiological traits of JIH could lead to better grain yield performance over IH under input-reduced practices.
参考文献 | 相关文章 | 多维度评价
4. Morphological and physiological traits of large-panicle rice varieties with high filled-grain percentage
MENG Tian-yao, WEI Huan-he, LI Chao, DAI Qi-gen, XU Ke, HUO Zhong-yang, WEI Hai-yan, GUO Bao-wei, ZHNAG Hong-cheng
Journal of Integrative Agriculture    2016, 15 (8): 1751-1762.   DOI: 10.1016/S2095-3119(15)61215-1
摘要1129)      PDF    收藏
   Understanding the morphological and physiological traits associated with improved filling efficiency in large-panicle rice varieties is critical to devise strategies for breeding programs and cultivation management practices. Information on such traits, however, remains limited. Two large-panicle varieties with high filled-grain percentage (HF) and two check large-panicle varieties with low filled-grain percentage (LF) were field-grown in 2012 and 2013. The number of spikelets per panicle of HF and LF both exceeded 300, and the filled-grain percentage (%) of HF was approximately 90, while that of LF was approximately 75 over the two years. The results showed that when the values were averaged across two years, HF yielded 12.9 t ha–1, while LF yielded 11.0 t ha–1. HF had a greater leaf area duration, biomass accumulation and transport of carbohydrates stored in the culm to the grains from heading to maturity compared with LF. HF exhibited a higher leaf photosynthetic rate, more green leaves on the culm, and higher root activity during filling phase, especially during the middle and late filling phases, in relative to LF. The length of HF for upper three leaves was significantly higher than that of LF, while the angle of upper three leaves on the main culm was less in both years. Meanwhile, specific leaf weight of HF was significantly higher when compared with LF. In addition, the grain filling characteristics of HF and LF were investigated in our study. Our results suggested that a higher leaf photosynthetic rate and root activity during filling phase, greater biomass accumulation and assimilate transport after heading, and longer, thicker and more erect upper three leaves were important morphological and physiological traits of HF, and these traits could be considered as selection criterion to develop large-panicle varieties with high filled-grain percentage.
参考文献 | 相关文章 | 多维度评价
5. Suitable growing zone and yield potential for late-maturity type of Yongyou japonica/indica hybrid rice in the lower reaches of Yangtze River, China
WEI Huan-he, LI Chao, XING Zhi-peng, WANG Wen-ting, DAI Qi-gen, ZHOU Gui-shen, WANG Li, XU Ke, HUO Zhong-yang, GUO Bao-wei, WEI Hai-yan, ZHANG Hong-cheng
Journal of Integrative Agriculture    2016, 15 (1): 50-62.   DOI: 10.1016/S2095-3119(15)61082-6
摘要2193)      PDF    收藏
Late-maturity type of Yongyou japonica/indica hybrids series (LMYS) have shown great yield potential, and are being widely planted in the lower reaches of Yangtze River, China. Knowledge about suitable growing zone and evaluation of yield advantage is of practical importance for LMYS in this region. Fifteen LMYS, two high-yielding inbred japonica check varieties (CK-J) and two high-yielding hybrid indica check varieties (CK-I) were grown at Xinghua (119.57°E, 33.05°N) of Lixiahe region, Yangzhou (119.25°E, 32.30°N) of Yanjiang region, Changshu (120.46°E, 31.41°N) of Taihu Lake region, and Ningbo (121.31°E, 29.45°N) of Ningshao Plain in 2013 and 2014. The results showed that maturity dates of the 15 were later than the secure maturity date at Xinghua and 6, 14 and 15 LMYS were mature before the secure maturity date at Yangzhou, Changshu and Ningbo, respectively. One variety was identified as high-yielding variety among LMYS (HYYS) at Yangzhou, 8 HYYS in 2013 and 9 HYYS in 2014 at Changshu, 9 HYYS at Ningbo. HYYS here referred to the variety among LMYS that was mature before the secure maturity date and had at least 8% higher grain yield than both CK-J and CK-I at each experimental site. Grain yield of HYYS at each experimental site was about 12.0 t ha–1 or higher, and was significantly higher than CK varieties. High yield of HYYS was mainly attributed to larger sink size due to more spikelets per panicle. Plant height of HYYS was about 140 cm, and was significantly higher than check varieties. Significant positive correlations were recorded between duration from heading to maturity stage and grain yield, and also between whole growth periods and grain yield. HYYS had obvious advantage over check varieties in biomass accumulation and leaf area duration from heading to maturity stage. Comprehensive consideration about safe maturity and yield performance of LMYS at each experimental site, Taihu Lake region (representative site Changshu) and Ningshao Plain (representative site Ningbo) were thought suitable growing zones for LMYS in the lower reaches of Yangtze River. The main factors underlying high yield of HYYS were larger sink size, higher plant height, longer duration from heading to maturity stage and whole growth periods, and higher biomass accumulation and leaf area duration during grain filling stage.
参考文献 | 相关文章 | 多维度评价