期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. JIA-2021-1763
ZHAO Yu-hui, WEN Xia, LI Qi-bing, JIANG Li, WANG Guang-wen, LIANG Li-bin, WANG Xiu-rong, CHEN Hua-lan, LI Cheng-jun
Journal of Integrative Agriculture    2022, 21 (7): 2095-2105.   DOI: 10.1016/S2095-3119(21)63840-6
摘要185)      PDF    收藏
Monoclonal antibodies (mAbs) are widely used in virus research and disease diagnosis.  The nucleoprotein (NP) of influenza A virus (IAV) plays important roles in multiple stages of the virus life cycle.  Therefore, generating conserved mAbs against NP and characterizing their properties will provide useful tools for IAV research.  In this study, two mAbs against the NP protein, 10E9 and 3F3, were generated with recombinant truncated NP proteins (NP-1 and NP-2) as immunogens.  The heavy-chain subclass of both 10E9 and 3F3 was determined to be IgG2α, and the light-chain type was κ.  Truncation and site-specific mutation analyses showed that the epitopes of mAbs 10E9 and 3F3 were located in the N terminal 84–89 amino acids and the C terminal 320–324 amino acids of the NP protein, respectively.  We found that mAbs 10E9 and 3F3 reacted well with the NP protein of H1–H15 subtypes of IAV.  Both 10E9 and 3F3 can be used in immunoprecipitation assay, and 10E9 was also successfully applied in confocal microscopy.  Furthermore, we found that the 10E9-recognized 84SAGKDP89 epitope and 3F3-recognized 320ENPAH324 epitope were highly conserved in NP among all avian and human IAVs.  Thus, the two mAbs we developed could be used as powerful tools in the development of diagnostic methods of IAV, and also surely promote the basic research in understanding the replication mechanisms of IAV.

参考文献 | 相关文章 | 多维度评价
2. Emergence of H5N1 highly pathogenic avian influenza in Democratic People’s Republic of Korea
LIU Li-ling, YANG Huan-liang, GUO Fu-sheng, WANG Xiu-rong, DENG Guo-hua, SHI Jian-zhong, TIAN Guo-bin, ZENG Xian-ying
Journal of Integrative Agriculture    2022, 21 (5): 1534-1538.   DOI: 10.1016/S2095-3119(21)63829-7
摘要154)      PDF    收藏
在过去的几十年,国内外研究人员对动物和人感染高致病性禽流感进行了全球范围的广泛监测,然而有关北朝鲜的禽流感流行病学研究数据却很少。在2013和2014年,在北朝鲜的家禽中多次暴发高致病性禽流感,我们分离到H5N1亚型高致病性禽流感病毒,进化分析显示分离到的2株病毒的HA基因高度同源,均属于2.3.2.1c分支,我们分析认为引起2014年鸡场禽流感暴发的病毒可能是由2013年Tudan鸭场病毒经迁徙野鸟引入。本实验的数据提供了禽流感病毒可以由野鸟-水禽-陆禽进行传播的直接证据。因此,我们必需加强水禽禽流感的监测和控制,这对预防和控制高致病性禽流感至关重要。


参考文献 | 相关文章 | 多维度评价
3. H7亚型禽流感病毒cELISA抗体检测方法的建立
WANG Cong-cong, WANG Si-wen, ZHANG Ying, SHI Jian-zhong, YIN Xin, LI Cheng-jun, WANG Xiu-rong
Journal of Integrative Agriculture    2022, 21 (1): 199-207.   DOI: 10.1016/S2095-3119(21)63645-6
摘要167)      PDF    收藏

【目的】H7亚型禽流感病毒(Avian influenza virus, AIV)和H5亚型一样,多数属于高致病性毒株,通常在禽类间传播,引起家禽出现严重的临床症状和高死亡率从1996年至2012年,加拿大、意大利、墨西哥、荷兰、英国和美国出现了人感染H7亚型流感病毒(H7N2H7N3H7N7)的病例。2013年,中国报告了人感染H7N9流感病毒事件,此后,该病毒持续在人和类中传播。因此,开展H7亚型禽流感病毒抗体检测工作成为一个重要问题。【方法】该研究用纯化H7-AIV作为包被抗原,辣根过氧化物酶(Horseradish peroxidase, HRP)标记的单克隆抗体1H9HRP-1H9)作为竞争抗体,采用棋盘滴定法建立了一种检测H7亚AIV抗体的竞争酶联免疫吸附实验(Competitive enzyme-linked immunosorbent assay, cELISA)【结果】抗原包被的最佳浓度为5 μg mL-1,血清稀释度为1/10,酶标抗体为1/3000。用ROC曲线分析法测定178份AIV阴性和368份AIV阳性血清(n=546)的cELISA临界值PI40%时,cELISA的特异性和敏感性分别为99.15%98.12%。该方法可检测H7NxN1--N4N7--N9)禽流感病毒抗体,与H1 -- H6H8 -- H15亚型禽流感病毒及鸡新城疫病毒(Newcastle disease virus, NDV)、传染性支气管炎病毒(Infectious bronchitis virus, IBV)和传染性法氏囊病病毒(Infectious bursal disease virus, IBDV)等常见禽类病毒无反应,具有良好的特异性。该方法与血凝素抑制试验的符合率为98.56%。重复性实验表明,批内和批间重复的变异系数均小于12%【结论、创新性】综上所述,研究利用H7亚型特异性酶标单克隆抗体作为竞争抗体,建立了cELISA抗体检测方法,其优势是酶标抗体与待检血清同时加入反应孔中进行竞争反应,与先加入待检血清,再加竞争抗体反应的常规方法比较,简化了操作步骤,缩短反应时间,开展H7-AIV抗体的大量检测提供了一种简单、便捷的技术手段

参考文献 | 相关文章 | 多维度评价
4. Development of a reverse-transcription loop-mediated isothermal amplification assay to detect avian influenza viruses in clinical specimens
SHI Lin, YU Xue-wu, YAO Wei, YU Ben-liang, HE Li-kun, GAO Yuan, ZHANG Yun-xian, TIAN Guo-bin, PING Ji-hui, WANG Xiu-rong
Journal of Integrative Agriculture    2019, 18 (7): 1428-1435.   DOI: 10.1016/S2095-3119(19)62700-0
摘要249)      PDF    收藏
In recent years, the avian influenza has brought not only serious economic loss to the poultry industry in China but also a serious threat to human health because of the avian influenza virus (AIV) gene recombination and reassortment.  Until now, traditional RT-PCR, fluorescence RT-PCR and virus isolation identification have been developed and utilized to detect AIV, but these methods require high-level instruments and experimental conditions, not suitable for the rapid detection in field and farms.  In order to develop a rapid, sensitive and practical method to detect and identify AIV subtypes, 4 specific primers to the conserved region of AIV M gene were designed and a loop-mediated isothermal amplification (RT-LAMP) method was established.  Using this method, the M gene of H1–H16 subtypes of AIV were amplified in 30 min with a water bath and all 16 H subtypes of AIV were able to be visually identified in presence of fluorescein, without cross reaction with other susceptible avian viruses.  In addition, the detection limit of the common H1, H5, H7, and H9 AIV subtypes with the RT-LAMP method was 0.1 PFU (plaque-forming unit), which was 10 times more sensitive than that using the routine RT-PCR.  Further comparative tests found that the positivity rate of RT-LAMP on detecting clinical samples was 4.18% (14/335) comparing with 3.58% (12/335) from real-time RT-PCR.  All these results suggested that the RT-LAMP method can specifically detect and identify AIV with high sensitivity and can be considered as a fast, convenient and practical method for the clinic test and epidemiological investigation of AIV.
 
参考文献 | 相关文章 | 多维度评价
5. Development of a real-time RT-PCR method for the detection of newly emerged highly pathogenic H7N9 influenza viruses
WANG Xiu-rong, GU Lin-lin, SHI Jian-zhong, XU Hai-feng, ZHANG Ying, ZENG Xian-ying, DENG Guo-hua, LI Cheng-jun, CHEN Hua-lan
Journal of Integrative Agriculture    2017, 16 (09): 2055-2061.   DOI: 10.1016/S2095-3119(17)61655-1
摘要837)      PDF    收藏
   In 2013, a human influenza outbreak caused by a novel H7N9 virus occurred in China.  Recently, the H7N9 virus acquired multiple basic amino acids at its hemagglutinin (HA) cleavage site, leading to the emergence of a highly pathogenic virus.  The development of an effective diagnostic method is imperative for the prevention and control of highly pathogenic H7N9 influenza.  Here, we designed and synthesized three pairs of primers based on the nucleotide sequence at the HA cleavage site of the newly emerged highly pathogenic H7N9 influenza virus.  One of the primer pairs and the corresponding probe displayed a high level of amplification efficiency on which a real-time RT-PCR method was established.  Amplification using this method resulted in a fluorescent signal for only the highly pathogenic H7N9 virus, and not for any of the H1–H15 subtype reference strains, thus demonstrating high specificity.  The method detected as low as 39.1 copies of HA-positive plasmid and exhibited similar sensitivity to the virus isolation method using embryonated chicken eggs.  Importantly, the real-time RT-PCR method exhibited 100% consistency with the virus isolation method in the diagnosis of field samples.  Collectively, our data demonstrate that this real-time RT-PCR assay is a rapid, sensitive and specific method, and the application will greatly aid the surveillance, prevention, and control of highly pathogenic H7N9 influenza viruses.
参考文献 | 相关文章 | 多维度评价
6. Inoculation with chlamydospores of Trichoderma asperellum SM- 12F1 accelerated arsenic volatilization and influenced arsenic availability in soils
WANG Xiu-rong, SU Shi-ming, ZENG Xi-bai, BAI Ling-yu, LI Lian-fang, DUAN Ran, WANG Ya-nan, WU Cui-xia
Journal of Integrative Agriculture    2015, 14 (2): 389-397.   DOI: 10.1016/S2095-3119(14)60772-3
摘要2032)      PDF    收藏
Fungi capable of arsenic (As) accumulation and volatilization are hoped to tackle As-contaminated environment in the future. However, little data is available regarding their performances in field soils. In this study, the chlamydospores of Trichoderma asperellum SM-12F1 capable of As resistance, accumulation, and volatilization were inoculated into As-contaminated Chenzhou (CZ) and Shimen (SM) soils, and subsequently As volatilization and availability were assessed. The results indicated that T. asperellum SM-12F1 could reproduce well in As-contaminated soils. After cultivated for 42 days, the colony forming units (cfu) of T. asperellum SM-12F1 in CZ and SM soils reached 1010–1011 cfu g–1 fresh soil when inoculated at a rate of 5.0%. Inoculation with chlamydospores of T. asperellum SM-12F1 could significantly accelerate As volatilization from soils. The contents of volatilized As from CZ and SM soils after being inoculated with chlamydospores at a rate of 5.0% for 42 days were 2.0 and 0.6 μg kg–1, respectively, which were about 27.5 and 2.5 times higher than their corresponding controls of no inoculation (CZ, 0.1 μg kg–1; SM, 0.3 μg kg–1). Furthermore, the available As content in SM soils was decreased by 23.7%, and that in CZ soils increased by 3.3% compared with their corresponding controls. Further studies showed that soil pH values significantly decreased as a function of cultivation time or the inoculation level of chlamydospores. The pH values in CZ and SM soils after being inoculated with 5.0% of chlamydospores for 42 days were 6.04 and 6.02, respectively, which were lowered by 0.34 and 1.21 compared with their corresponding controls (CZ, 6.38; SM, 7.23). The changes in soil pH and As-binding fractions after inoculation might be responsible for the changes in As availability. These observations could shed light on the future remediation of As-contaminated soils using fungi.
参考文献 | 相关文章 | 多维度评价